Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnumbasgrplem3 Structured version   Unicode version

Theorem isnumbasgrplem3 35398
Description: Every nonempty numerable set can be given the structure of an Abelian group, either a finite cyclic group or a vector space over Z/2Z. (Contributed by Stefan O'Rear, 10-Jul-2015.)
Assertion
Ref Expression
isnumbasgrplem3  |-  ( ( S  e.  dom  card  /\  S  =/=  (/) )  ->  S  e.  ( Base "
Abel ) )

Proof of Theorem isnumbasgrplem3
StepHypRef Expression
1 hashcl 12473 . . . . . 6  |-  ( S  e.  Fin  ->  ( # `
 S )  e. 
NN0 )
21adantl 464 . . . . 5  |-  ( ( S  =/=  (/)  /\  S  e.  Fin )  ->  ( # `
 S )  e. 
NN0 )
3 eqid 2402 . . . . . 6  |-  (ℤ/n `  ( # `
 S ) )  =  (ℤ/n `  ( # `  S
) )
43zncrng 18879 . . . . 5  |-  ( (
# `  S )  e.  NN0  ->  (ℤ/n `  ( # `  S
) )  e.  CRing )
5 crngring 17527 . . . . 5  |-  ( (ℤ/n `  ( # `  S ) )  e.  CRing  ->  (ℤ/n `  ( # `
 S ) )  e.  Ring )
6 ringabl 17546 . . . . 5  |-  ( (ℤ/n `  ( # `  S ) )  e.  Ring  ->  (ℤ/n `  ( # `  S ) )  e.  Abel )
72, 4, 5, 64syl 21 . . . 4  |-  ( ( S  =/=  (/)  /\  S  e.  Fin )  ->  (ℤ/n `  ( # `
 S ) )  e.  Abel )
8 hashnncl 12482 . . . . . . . 8  |-  ( S  e.  Fin  ->  (
( # `  S )  e.  NN  <->  S  =/=  (/) ) )
98biimparc 485 . . . . . . 7  |-  ( ( S  =/=  (/)  /\  S  e.  Fin )  ->  ( # `
 S )  e.  NN )
10 eqid 2402 . . . . . . . 8  |-  ( Base `  (ℤ/n `  ( # `  S
) ) )  =  ( Base `  (ℤ/n `  ( # `
 S ) ) )
113, 10znhash 18893 . . . . . . 7  |-  ( (
# `  S )  e.  NN  ->  ( # `  ( Base `  (ℤ/n `  ( # `  S
) ) ) )  =  ( # `  S
) )
129, 11syl 17 . . . . . 6  |-  ( ( S  =/=  (/)  /\  S  e.  Fin )  ->  ( # `
 ( Base `  (ℤ/n `  ( # `
 S ) ) ) )  =  (
# `  S )
)
1312eqcomd 2410 . . . . 5  |-  ( ( S  =/=  (/)  /\  S  e.  Fin )  ->  ( # `
 S )  =  ( # `  ( Base `  (ℤ/n `  ( # `  S
) ) ) ) )
14 simpr 459 . . . . . 6  |-  ( ( S  =/=  (/)  /\  S  e.  Fin )  ->  S  e.  Fin )
153, 10znfi 18894 . . . . . . 7  |-  ( (
# `  S )  e.  NN  ->  ( Base `  (ℤ/n `  ( # `  S
) ) )  e. 
Fin )
169, 15syl 17 . . . . . 6  |-  ( ( S  =/=  (/)  /\  S  e.  Fin )  ->  ( Base `  (ℤ/n `  ( # `  S
) ) )  e. 
Fin )
17 hashen 12465 . . . . . 6  |-  ( ( S  e.  Fin  /\  ( Base `  (ℤ/n `  ( # `  S
) ) )  e. 
Fin )  ->  (
( # `  S )  =  ( # `  ( Base `  (ℤ/n `  ( # `  S
) ) ) )  <-> 
S  ~~  ( Base `  (ℤ/n `  ( # `  S
) ) ) ) )
1814, 16, 17syl2anc 659 . . . . 5  |-  ( ( S  =/=  (/)  /\  S  e.  Fin )  ->  (
( # `  S )  =  ( # `  ( Base `  (ℤ/n `  ( # `  S
) ) ) )  <-> 
S  ~~  ( Base `  (ℤ/n `  ( # `  S
) ) ) ) )
1913, 18mpbid 210 . . . 4  |-  ( ( S  =/=  (/)  /\  S  e.  Fin )  ->  S  ~~  ( Base `  (ℤ/n `  ( # `
 S ) ) ) )
2010isnumbasgrplem1 35394 . . . 4  |-  ( ( (ℤ/n `  ( # `  S
) )  e.  Abel  /\  S  ~~  ( Base `  (ℤ/n `  ( # `  S
) ) ) )  ->  S  e.  (
Base " Abel ) )
217, 19, 20syl2anc 659 . . 3  |-  ( ( S  =/=  (/)  /\  S  e.  Fin )  ->  S  e.  ( Base " Abel ) )
2221adantll 712 . 2  |-  ( ( ( S  e.  dom  card  /\  S  =/=  (/) )  /\  S  e.  Fin )  ->  S  e.  ( Base " Abel ) )
23 2nn0 10852 . . . . . . 7  |-  2  e.  NN0
24 eqid 2402 . . . . . . . 8  |-  (ℤ/n `  2
)  =  (ℤ/n `  2
)
2524zncrng 18879 . . . . . . 7  |-  ( 2  e.  NN0  ->  (ℤ/n `  2
)  e.  CRing )
26 crngring 17527 . . . . . . 7  |-  ( (ℤ/n ` 
2 )  e.  CRing  -> 
(ℤ/n `  2 )  e. 
Ring )
2723, 25, 26mp2b 10 . . . . . 6  |-  (ℤ/n `  2
)  e.  Ring
28 eqid 2402 . . . . . . 7  |-  ( (ℤ/n ` 
2 ) freeLMod  S )  =  ( (ℤ/n `  2
) freeLMod  S )
2928frlmlmod 19076 . . . . . 6  |-  ( ( (ℤ/n `  2 )  e. 
Ring  /\  S  e.  dom  card )  ->  ( (ℤ/n `  2
) freeLMod  S )  e.  LMod )
3027, 29mpan 668 . . . . 5  |-  ( S  e.  dom  card  ->  ( (ℤ/n `  2 ) freeLMod  S
)  e.  LMod )
31 lmodabl 17875 . . . . 5  |-  ( ( (ℤ/n `  2 ) freeLMod  S
)  e.  LMod  ->  ( (ℤ/n `  2 ) freeLMod  S
)  e.  Abel )
3230, 31syl 17 . . . 4  |-  ( S  e.  dom  card  ->  ( (ℤ/n `  2 ) freeLMod  S
)  e.  Abel )
3332ad2antrr 724 . . 3  |-  ( ( ( S  e.  dom  card  /\  S  =/=  (/) )  /\  -.  S  e.  Fin )  ->  ( (ℤ/n `  2
) freeLMod  S )  e.  Abel )
34 eqid 2402 . . . . . . 7  |-  ( Base `  ( (ℤ/n `  2 ) freeLMod  S
) )  =  (
Base `  ( (ℤ/n `  2
) freeLMod  S ) )
3524, 28, 34frlmpwfi 35390 . . . . . 6  |-  ( S  e.  dom  card  ->  (
Base `  ( (ℤ/n `  2
) freeLMod  S ) )  ~~  ( ~P S  i^i  Fin ) )
3635ad2antrr 724 . . . . 5  |-  ( ( ( S  e.  dom  card  /\  S  =/=  (/) )  /\  -.  S  e.  Fin )  ->  ( Base `  (
(ℤ/n `  2 ) freeLMod  S
) )  ~~  ( ~P S  i^i  Fin )
)
37 simpll 752 . . . . . 6  |-  ( ( ( S  e.  dom  card  /\  S  =/=  (/) )  /\  -.  S  e.  Fin )  ->  S  e.  dom  card )
38 numinfctb 35396 . . . . . . 7  |-  ( ( S  e.  dom  card  /\ 
-.  S  e.  Fin )  ->  om  ~<_  S )
3938adantlr 713 . . . . . 6  |-  ( ( ( S  e.  dom  card  /\  S  =/=  (/) )  /\  -.  S  e.  Fin )  ->  om  ~<_  S )
40 infpwfien 8474 . . . . . 6  |-  ( ( S  e.  dom  card  /\ 
om  ~<_  S )  -> 
( ~P S  i^i  Fin )  ~~  S )
4137, 39, 40syl2anc 659 . . . . 5  |-  ( ( ( S  e.  dom  card  /\  S  =/=  (/) )  /\  -.  S  e.  Fin )  ->  ( ~P S  i^i  Fin )  ~~  S
)
42 entr 7604 . . . . 5  |-  ( ( ( Base `  (
(ℤ/n `  2 ) freeLMod  S
) )  ~~  ( ~P S  i^i  Fin )  /\  ( ~P S  i^i  Fin )  ~~  S )  ->  ( Base `  (
(ℤ/n `  2 ) freeLMod  S
) )  ~~  S
)
4336, 41, 42syl2anc 659 . . . 4  |-  ( ( ( S  e.  dom  card  /\  S  =/=  (/) )  /\  -.  S  e.  Fin )  ->  ( Base `  (
(ℤ/n `  2 ) freeLMod  S
) )  ~~  S
)
4443ensymd 7603 . . 3  |-  ( ( ( S  e.  dom  card  /\  S  =/=  (/) )  /\  -.  S  e.  Fin )  ->  S  ~~  ( Base `  ( (ℤ/n `  2
) freeLMod  S ) ) )
4534isnumbasgrplem1 35394 . . 3  |-  ( ( ( (ℤ/n `  2 ) freeLMod  S
)  e.  Abel  /\  S  ~~  ( Base `  (
(ℤ/n `  2 ) freeLMod  S
) ) )  ->  S  e.  ( Base "
Abel ) )
4633, 44, 45syl2anc 659 . 2  |-  ( ( ( S  e.  dom  card  /\  S  =/=  (/) )  /\  -.  S  e.  Fin )  ->  S  e.  (
Base " Abel ) )
4722, 46pm2.61dan 792 1  |-  ( ( S  e.  dom  card  /\  S  =/=  (/) )  ->  S  e.  ( Base "
Abel ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842    =/= wne 2598    i^i cin 3412   (/)c0 3737   ~Pcpw 3954   class class class wbr 4394   dom cdm 4822   "cima 4825   ` cfv 5568  (class class class)co 6277   omcom 6682    ~~ cen 7550    ~<_ cdom 7551   Fincfn 7553   cardccrd 8347   NNcn 10575   2c2 10625   NN0cn0 10835   #chash 12450   Basecbs 14839   Abelcabl 17121   Ringcrg 17516   CRingccrg 17517   LModclmod 17830  ℤ/nczn 18838   freeLMod cfrlm 19073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-inf2 8090  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598  ax-pre-sup 9599  ax-addf 9600  ax-mulf 9601
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-se 4782  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-isom 5577  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-1st 6783  df-2nd 6784  df-supp 6902  df-tpos 6957  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-seqom 7149  df-1o 7166  df-2o 7167  df-oadd 7170  df-er 7347  df-ec 7349  df-qs 7353  df-map 7458  df-ixp 7507  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-fsupp 7863  df-sup 7934  df-oi 7968  df-card 8351  df-acn 8354  df-cda 8579  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-div 10247  df-nn 10576  df-2 10634  df-3 10635  df-4 10636  df-5 10637  df-6 10638  df-7 10639  df-8 10640  df-9 10641  df-10 10642  df-n0 10836  df-z 10905  df-dec 11019  df-uz 11127  df-rp 11265  df-fz 11725  df-fzo 11853  df-fl 11964  df-mod 12033  df-seq 12150  df-hash 12451  df-dvds 14194  df-struct 14841  df-ndx 14842  df-slot 14843  df-base 14844  df-sets 14845  df-ress 14846  df-plusg 14920  df-mulr 14921  df-starv 14922  df-sca 14923  df-vsca 14924  df-ip 14925  df-tset 14926  df-ple 14927  df-ds 14929  df-unif 14930  df-hom 14931  df-cco 14932  df-0g 15054  df-prds 15060  df-pws 15062  df-imas 15120  df-qus 15121  df-mgm 16194  df-sgrp 16233  df-mnd 16243  df-mhm 16288  df-grp 16379  df-minusg 16380  df-sbg 16381  df-mulg 16382  df-subg 16520  df-nsg 16521  df-eqg 16522  df-ghm 16587  df-gim 16629  df-gic 16630  df-cmn 17122  df-abl 17123  df-mgp 17460  df-ur 17472  df-ring 17518  df-cring 17519  df-oppr 17590  df-dvdsr 17608  df-rnghom 17682  df-subrg 17745  df-lmod 17832  df-lss 17897  df-lsp 17936  df-sra 18136  df-rgmod 18137  df-lidl 18138  df-rsp 18139  df-2idl 18198  df-cnfld 18739  df-zring 18807  df-zrh 18839  df-zn 18842  df-dsmm 19059  df-frlm 19074
This theorem is referenced by:  isnumbasabl  35399  dfacbasgrp  35401
  Copyright terms: Public domain W3C validator