MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnsg4 Structured version   Unicode version

Theorem isnsg4 15844
Description: A subgroup is normal iff its normalizer is the entire group. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
elnmz.1  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }
nmzsubg.2  |-  X  =  ( Base `  G
)
nmzsubg.3  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
isnsg4  |-  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  N  =  X
) )
Distinct variable groups:    x, y, G    x, S, y    x,  .+ , y    x, X, y
Allowed substitution hints:    N( x, y)

Proof of Theorem isnsg4
StepHypRef Expression
1 nmzsubg.2 . . 3  |-  X  =  ( Base `  G
)
2 nmzsubg.3 . . 3  |-  .+  =  ( +g  `  G )
31, 2isnsg 15830 . 2  |-  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) ) )
4 eqcom 2463 . . . 4  |-  ( N  =  X  <->  X  =  N )
5 elnmz.1 . . . . 5  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }
65eqeq2i 2472 . . . 4  |-  ( X  =  N  <->  X  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) } )
7 rabid2 3004 . . . 4  |-  ( X  =  { x  e.  X  |  A. y  e.  X  ( (
x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S
) }  <->  A. x  e.  X  A. y  e.  X  ( (
x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S
) )
84, 6, 73bitri 271 . . 3  |-  ( N  =  X  <->  A. x  e.  X  A. y  e.  X  ( (
x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S
) )
98anbi2i 694 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  N  =  X )  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) ) )
103, 9bitr4i 252 1  |-  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  N  =  X
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2799   {crab 2803   ` cfv 5527  (class class class)co 6201   Basecbs 14293   +g cplusg 14358  SubGrpcsubg 15795  NrmSGrpcnsg 15796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fv 5535  df-ov 6204  df-subg 15798  df-nsg 15799
This theorem is referenced by:  conjnsg  15902
  Copyright terms: Public domain W3C validator