MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnsg Structured version   Unicode version

Theorem isnsg 16357
Description: Property of being a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
isnsg.1  |-  X  =  ( Base `  G
)
isnsg.2  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
isnsg  |-  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) ) )
Distinct variable groups:    x, y, G    x,  .+ , y    x, S, y    x, X, y

Proof of Theorem isnsg
Dummy variables  g 
b  p  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nsg 16326 . . . 4  |- NrmSGrp  =  ( g  e.  Grp  |->  { s  e.  (SubGrp `  g )  |  [. ( Base `  g )  /  b ]. [. ( +g  `  g )  /  p ]. A. x  e.  b  A. y  e.  b  ( ( x p y )  e.  s  <->  ( y p x )  e.  s ) } )
21dmmptss 5509 . . 3  |-  dom NrmSGrp  C_  Grp
3 elfvdm 5898 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  G  e.  dom NrmSGrp )
42, 3sseldi 3497 . 2  |-  ( S  e.  (NrmSGrp `  G
)  ->  G  e.  Grp )
5 subgrcl 16333 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
65adantr 465 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  (
( x  .+  y
)  e.  S  <->  ( y  .+  x )  e.  S
) )  ->  G  e.  Grp )
7 fveq2 5872 . . . . . 6  |-  ( g  =  G  ->  (SubGrp `  g )  =  (SubGrp `  G ) )
8 fvex 5882 . . . . . . . 8  |-  ( Base `  g )  e.  _V
98a1i 11 . . . . . . 7  |-  ( g  =  G  ->  ( Base `  g )  e. 
_V )
10 fveq2 5872 . . . . . . . 8  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
11 isnsg.1 . . . . . . . 8  |-  X  =  ( Base `  G
)
1210, 11syl6eqr 2516 . . . . . . 7  |-  ( g  =  G  ->  ( Base `  g )  =  X )
13 fvex 5882 . . . . . . . . 9  |-  ( +g  `  g )  e.  _V
1413a1i 11 . . . . . . . 8  |-  ( ( g  =  G  /\  b  =  X )  ->  ( +g  `  g
)  e.  _V )
15 simpl 457 . . . . . . . . . 10  |-  ( ( g  =  G  /\  b  =  X )  ->  g  =  G )
1615fveq2d 5876 . . . . . . . . 9  |-  ( ( g  =  G  /\  b  =  X )  ->  ( +g  `  g
)  =  ( +g  `  G ) )
17 isnsg.2 . . . . . . . . 9  |-  .+  =  ( +g  `  G )
1816, 17syl6eqr 2516 . . . . . . . 8  |-  ( ( g  =  G  /\  b  =  X )  ->  ( +g  `  g
)  =  .+  )
19 simplr 755 . . . . . . . . 9  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  b  =  X )
20 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  p  =  .+  )
2120oveqd 6313 . . . . . . . . . . . 12  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  (
x p y )  =  ( x  .+  y ) )
2221eleq1d 2526 . . . . . . . . . . 11  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  (
( x p y )  e.  s  <->  ( x  .+  y )  e.  s ) )
2320oveqd 6313 . . . . . . . . . . . 12  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  (
y p x )  =  ( y  .+  x ) )
2423eleq1d 2526 . . . . . . . . . . 11  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  (
( y p x )  e.  s  <->  ( y  .+  x )  e.  s ) )
2522, 24bibi12d 321 . . . . . . . . . 10  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  (
( ( x p y )  e.  s  <-> 
( y p x )  e.  s )  <-> 
( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) ) )
2619, 25raleqbidv 3068 . . . . . . . . 9  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  ( A. y  e.  b 
( ( x p y )  e.  s  <-> 
( y p x )  e.  s )  <->  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) ) )
2719, 26raleqbidv 3068 . . . . . . . 8  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  ( A. x  e.  b  A. y  e.  b 
( ( x p y )  e.  s  <-> 
( y p x )  e.  s )  <->  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) ) )
2814, 18, 27sbcied2 3365 . . . . . . 7  |-  ( ( g  =  G  /\  b  =  X )  ->  ( [. ( +g  `  g )  /  p ]. A. x  e.  b 
A. y  e.  b  ( ( x p y )  e.  s  <-> 
( y p x )  e.  s )  <->  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) ) )
299, 12, 28sbcied2 3365 . . . . . 6  |-  ( g  =  G  ->  ( [. ( Base `  g
)  /  b ]. [. ( +g  `  g
)  /  p ]. A. x  e.  b  A. y  e.  b 
( ( x p y )  e.  s  <-> 
( y p x )  e.  s )  <->  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) ) )
307, 29rabeqbidv 3104 . . . . 5  |-  ( g  =  G  ->  { s  e.  (SubGrp `  g
)  |  [. ( Base `  g )  / 
b ]. [. ( +g  `  g )  /  p ]. A. x  e.  b 
A. y  e.  b  ( ( x p y )  e.  s  <-> 
( y p x )  e.  s ) }  =  { s  e.  (SubGrp `  G
)  |  A. x  e.  X  A. y  e.  X  ( (
x  .+  y )  e.  s  <->  ( y  .+  x )  e.  s ) } )
31 fvex 5882 . . . . . 6  |-  (SubGrp `  G )  e.  _V
3231rabex 4607 . . . . 5  |-  { s  e.  (SubGrp `  G
)  |  A. x  e.  X  A. y  e.  X  ( (
x  .+  y )  e.  s  <->  ( y  .+  x )  e.  s ) }  e.  _V
3330, 1, 32fvmpt 5956 . . . 4  |-  ( G  e.  Grp  ->  (NrmSGrp `  G )  =  {
s  e.  (SubGrp `  G )  |  A. x  e.  X  A. y  e.  X  (
( x  .+  y
)  e.  s  <->  ( y  .+  x )  e.  s ) } )
3433eleq2d 2527 . . 3  |-  ( G  e.  Grp  ->  ( S  e.  (NrmSGrp `  G
)  <->  S  e.  { s  e.  (SubGrp `  G
)  |  A. x  e.  X  A. y  e.  X  ( (
x  .+  y )  e.  s  <->  ( y  .+  x )  e.  s ) } ) )
35 eleq2 2530 . . . . . 6  |-  ( s  =  S  ->  (
( x  .+  y
)  e.  s  <->  ( x  .+  y )  e.  S
) )
36 eleq2 2530 . . . . . 6  |-  ( s  =  S  ->  (
( y  .+  x
)  e.  s  <->  ( y  .+  x )  e.  S
) )
3735, 36bibi12d 321 . . . . 5  |-  ( s  =  S  ->  (
( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s )  <-> 
( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) ) )
38372ralbidv 2901 . . . 4  |-  ( s  =  S  ->  ( A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s )  <->  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) ) )
3938elrab 3257 . . 3  |-  ( S  e.  { s  e.  (SubGrp `  G )  |  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) }  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) ) )
4034, 39syl6bb 261 . 2  |-  ( G  e.  Grp  ->  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) ) ) )
414, 6, 40pm5.21nii 353 1  |-  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   {crab 2811   _Vcvv 3109   [.wsbc 3327   dom cdm 5008   ` cfv 5594  (class class class)co 6296   Basecbs 14644   +g cplusg 14712   Grpcgrp 16180  SubGrpcsubg 16322  NrmSGrpcnsg 16323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fv 5602  df-ov 6299  df-subg 16325  df-nsg 16326
This theorem is referenced by:  isnsg2  16358  nsgbi  16359  nsgsubg  16360  isnsg4  16371  nmznsg  16372  ablnsg  16980  rzgrp  23067
  Copyright terms: Public domain W3C validator