MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnrm3 Structured version   Unicode version

Theorem isnrm3 18863
Description: A topological space is normal iff any two disjoint closed sets are separated by open sets. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
isnrm3  |-  ( J  e.  Nrm  <->  ( J  e.  Top  /\  A. c  e.  ( Clsd `  J
) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y
)  =  (/) ) ) ) )
Distinct variable groups:    x, y    c, d, x, y, J

Proof of Theorem isnrm3
StepHypRef Expression
1 nrmtop 18840 . . 3  |-  ( J  e.  Nrm  ->  J  e.  Top )
2 nrmsep 18861 . . . . . 6  |-  ( ( J  e.  Nrm  /\  ( c  e.  (
Clsd `  J )  /\  d  e.  ( Clsd `  J )  /\  ( c  i^i  d
)  =  (/) ) )  ->  E. x  e.  J  E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y
)  =  (/) ) )
323exp2 1200 . . . . 5  |-  ( J  e.  Nrm  ->  (
c  e.  ( Clsd `  J )  ->  (
d  e.  ( Clsd `  J )  ->  (
( c  i^i  d
)  =  (/)  ->  E. x  e.  J  E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y )  =  (/) ) ) ) ) )
43imp3a 431 . . . 4  |-  ( J  e.  Nrm  ->  (
( c  e.  (
Clsd `  J )  /\  d  e.  ( Clsd `  J ) )  ->  ( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y
)  =  (/) ) ) ) )
54ralrimivv 2805 . . 3  |-  ( J  e.  Nrm  ->  A. c  e.  ( Clsd `  J
) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y
)  =  (/) ) ) )
61, 5jca 529 . 2  |-  ( J  e.  Nrm  ->  ( J  e.  Top  /\  A. c  e.  ( Clsd `  J ) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y
)  =  (/) ) ) ) )
7 simpl 454 . . 3  |-  ( ( J  e.  Top  /\  A. c  e.  ( Clsd `  J ) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y
)  =  (/) ) ) )  ->  J  e.  Top )
8 simpr1 989 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  y  e.  J )  /\  (
c  C_  x  /\  d  C_  y  /\  (
x  i^i  y )  =  (/) ) )  -> 
c  C_  x )
9 simpr2 990 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  y  e.  J )  /\  (
c  C_  x  /\  d  C_  y  /\  (
x  i^i  y )  =  (/) ) )  -> 
d  C_  y )
10 sslin 3573 . . . . . . . . . . . . 13  |-  ( d 
C_  y  ->  (
( ( cls `  J
) `  x )  i^i  d )  C_  (
( ( cls `  J
) `  x )  i^i  y ) )
119, 10syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  y  e.  J )  /\  (
c  C_  x  /\  d  C_  y  /\  (
x  i^i  y )  =  (/) ) )  -> 
( ( ( cls `  J ) `  x
)  i^i  d )  C_  ( ( ( cls `  J ) `  x
)  i^i  y )
)
12 simplll 752 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  y  e.  J )  /\  (
c  C_  x  /\  d  C_  y  /\  (
x  i^i  y )  =  (/) ) )  ->  J  e.  Top )
13 simplr 749 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  y  e.  J )  /\  (
c  C_  x  /\  d  C_  y  /\  (
x  i^i  y )  =  (/) ) )  -> 
y  e.  J )
14 eqid 2441 . . . . . . . . . . . . . . 15  |-  U. J  =  U. J
1514opncld 18537 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  y  e.  J )  ->  ( U. J  \ 
y )  e.  (
Clsd `  J )
)
1612, 13, 15syl2anc 656 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  y  e.  J )  /\  (
c  C_  x  /\  d  C_  y  /\  (
x  i^i  y )  =  (/) ) )  -> 
( U. J  \ 
y )  e.  (
Clsd `  J )
)
17 simpr3 991 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  y  e.  J )  /\  (
c  C_  x  /\  d  C_  y  /\  (
x  i^i  y )  =  (/) ) )  -> 
( x  i^i  y
)  =  (/) )
18 simpllr 753 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  y  e.  J )  /\  (
c  C_  x  /\  d  C_  y  /\  (
x  i^i  y )  =  (/) ) )  ->  x  e.  J )
19 elssuni 4118 . . . . . . . . . . . . . . 15  |-  ( x  e.  J  ->  x  C_ 
U. J )
20 reldisj 3719 . . . . . . . . . . . . . . 15  |-  ( x 
C_  U. J  ->  (
( x  i^i  y
)  =  (/)  <->  x  C_  ( U. J  \  y
) ) )
2118, 19, 203syl 20 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  y  e.  J )  /\  (
c  C_  x  /\  d  C_  y  /\  (
x  i^i  y )  =  (/) ) )  -> 
( ( x  i^i  y )  =  (/)  <->  x  C_  ( U. J  \ 
y ) ) )
2217, 21mpbid 210 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  y  e.  J )  /\  (
c  C_  x  /\  d  C_  y  /\  (
x  i^i  y )  =  (/) ) )  ->  x  C_  ( U. J  \  y ) )
2314clsss2 18576 . . . . . . . . . . . . . 14  |-  ( ( ( U. J  \ 
y )  e.  (
Clsd `  J )  /\  x  C_  ( U. J  \  y ) )  ->  ( ( cls `  J ) `  x
)  C_  ( U. J  \  y ) )
24 ssdifin0 3757 . . . . . . . . . . . . . 14  |-  ( ( ( cls `  J
) `  x )  C_  ( U. J  \ 
y )  ->  (
( ( cls `  J
) `  x )  i^i  y )  =  (/) )
2523, 24syl 16 . . . . . . . . . . . . 13  |-  ( ( ( U. J  \ 
y )  e.  (
Clsd `  J )  /\  x  C_  ( U. J  \  y ) )  ->  ( ( ( cls `  J ) `
 x )  i^i  y )  =  (/) )
2616, 22, 25syl2anc 656 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  y  e.  J )  /\  (
c  C_  x  /\  d  C_  y  /\  (
x  i^i  y )  =  (/) ) )  -> 
( ( ( cls `  J ) `  x
)  i^i  y )  =  (/) )
27 sseq0 3666 . . . . . . . . . . . 12  |-  ( ( ( ( ( cls `  J ) `  x
)  i^i  d )  C_  ( ( ( cls `  J ) `  x
)  i^i  y )  /\  ( ( ( cls `  J ) `  x
)  i^i  y )  =  (/) )  ->  (
( ( cls `  J
) `  x )  i^i  d )  =  (/) )
2811, 26, 27syl2anc 656 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  y  e.  J )  /\  (
c  C_  x  /\  d  C_  y  /\  (
x  i^i  y )  =  (/) ) )  -> 
( ( ( cls `  J ) `  x
)  i^i  d )  =  (/) )
298, 28jca 529 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  y  e.  J )  /\  (
c  C_  x  /\  d  C_  y  /\  (
x  i^i  y )  =  (/) ) )  -> 
( c  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  d )  =  (/) ) )
3029ex 434 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  y  e.  J
)  ->  ( (
c  C_  x  /\  d  C_  y  /\  (
x  i^i  y )  =  (/) )  ->  (
c  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  d )  =  (/) ) ) )
3130rexlimdva 2839 . . . . . . . 8  |-  ( ( J  e.  Top  /\  x  e.  J )  ->  ( E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y
)  =  (/) )  -> 
( c  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  d )  =  (/) ) ) )
3231reximdva 2826 . . . . . . 7  |-  ( J  e.  Top  ->  ( E. x  e.  J  E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y
)  =  (/) )  ->  E. x  e.  J  ( c  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  d )  =  (/) ) ) )
3332imim2d 52 . . . . . 6  |-  ( J  e.  Top  ->  (
( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y
)  =  (/) ) )  ->  ( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  ( c  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  d )  =  (/) ) ) ) )
3433ralimdv 2793 . . . . 5  |-  ( J  e.  Top  ->  ( A. d  e.  ( Clsd `  J ) ( ( c  i^i  d
)  =  (/)  ->  E. x  e.  J  E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y )  =  (/) ) )  ->  A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  ( c  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  d )  =  (/) ) ) ) )
3534ralimdv 2793 . . . 4  |-  ( J  e.  Top  ->  ( A. c  e.  ( Clsd `  J ) A. d  e.  ( Clsd `  J ) ( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y )  =  (/) ) )  ->  A. c  e.  ( Clsd `  J
) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  ( c  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  d )  =  (/) ) ) ) )
3635imp 429 . . 3  |-  ( ( J  e.  Top  /\  A. c  e.  ( Clsd `  J ) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y
)  =  (/) ) ) )  ->  A. c  e.  ( Clsd `  J
) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  ( c  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  d )  =  (/) ) ) )
37 isnrm2 18862 . . 3  |-  ( J  e.  Nrm  <->  ( J  e.  Top  /\  A. c  e.  ( Clsd `  J
) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  ( c  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  d )  =  (/) ) ) ) )
387, 36, 37sylanbrc 659 . 2  |-  ( ( J  e.  Top  /\  A. c  e.  ( Clsd `  J ) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y
)  =  (/) ) ) )  ->  J  e.  Nrm )
396, 38impbii 188 1  |-  ( J  e.  Nrm  <->  ( J  e.  Top  /\  A. c  e.  ( Clsd `  J
) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y
)  =  (/) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   A.wral 2713   E.wrex 2714    \ cdif 3322    i^i cin 3324    C_ wss 3325   (/)c0 3634   U.cuni 4088   ` cfv 5415   Topctop 18398   Clsdccld 18520   clsccl 18522   Nrmcnrm 18814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-top 18403  df-cld 18523  df-cls 18525  df-nrm 18821
This theorem is referenced by:  metnrm  20338
  Copyright terms: Public domain W3C validator