MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnrm3 Structured version   Unicode version

Theorem isnrm3 19090
Description: A topological space is normal iff any two disjoint closed sets are separated by open sets. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
isnrm3  |-  ( J  e.  Nrm  <->  ( J  e.  Top  /\  A. c  e.  ( Clsd `  J
) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y
)  =  (/) ) ) ) )
Distinct variable groups:    x, y    c, d, x, y, J

Proof of Theorem isnrm3
StepHypRef Expression
1 nrmtop 19067 . . 3  |-  ( J  e.  Nrm  ->  J  e.  Top )
2 nrmsep 19088 . . . . . 6  |-  ( ( J  e.  Nrm  /\  ( c  e.  (
Clsd `  J )  /\  d  e.  ( Clsd `  J )  /\  ( c  i^i  d
)  =  (/) ) )  ->  E. x  e.  J  E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y
)  =  (/) ) )
323exp2 1206 . . . . 5  |-  ( J  e.  Nrm  ->  (
c  e.  ( Clsd `  J )  ->  (
d  e.  ( Clsd `  J )  ->  (
( c  i^i  d
)  =  (/)  ->  E. x  e.  J  E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y )  =  (/) ) ) ) ) )
43impd 431 . . . 4  |-  ( J  e.  Nrm  ->  (
( c  e.  (
Clsd `  J )  /\  d  e.  ( Clsd `  J ) )  ->  ( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y
)  =  (/) ) ) ) )
54ralrimivv 2907 . . 3  |-  ( J  e.  Nrm  ->  A. c  e.  ( Clsd `  J
) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y
)  =  (/) ) ) )
61, 5jca 532 . 2  |-  ( J  e.  Nrm  ->  ( J  e.  Top  /\  A. c  e.  ( Clsd `  J ) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y
)  =  (/) ) ) ) )
7 simpl 457 . . 3  |-  ( ( J  e.  Top  /\  A. c  e.  ( Clsd `  J ) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y
)  =  (/) ) ) )  ->  J  e.  Top )
8 simpr1 994 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  y  e.  J )  /\  (
c  C_  x  /\  d  C_  y  /\  (
x  i^i  y )  =  (/) ) )  -> 
c  C_  x )
9 simpr2 995 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  y  e.  J )  /\  (
c  C_  x  /\  d  C_  y  /\  (
x  i^i  y )  =  (/) ) )  -> 
d  C_  y )
10 sslin 3679 . . . . . . . . . . . . 13  |-  ( d 
C_  y  ->  (
( ( cls `  J
) `  x )  i^i  d )  C_  (
( ( cls `  J
) `  x )  i^i  y ) )
119, 10syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  y  e.  J )  /\  (
c  C_  x  /\  d  C_  y  /\  (
x  i^i  y )  =  (/) ) )  -> 
( ( ( cls `  J ) `  x
)  i^i  d )  C_  ( ( ( cls `  J ) `  x
)  i^i  y )
)
12 simplll 757 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  y  e.  J )  /\  (
c  C_  x  /\  d  C_  y  /\  (
x  i^i  y )  =  (/) ) )  ->  J  e.  Top )
13 simplr 754 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  y  e.  J )  /\  (
c  C_  x  /\  d  C_  y  /\  (
x  i^i  y )  =  (/) ) )  -> 
y  e.  J )
14 eqid 2452 . . . . . . . . . . . . . . 15  |-  U. J  =  U. J
1514opncld 18764 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  y  e.  J )  ->  ( U. J  \ 
y )  e.  (
Clsd `  J )
)
1612, 13, 15syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  y  e.  J )  /\  (
c  C_  x  /\  d  C_  y  /\  (
x  i^i  y )  =  (/) ) )  -> 
( U. J  \ 
y )  e.  (
Clsd `  J )
)
17 simpr3 996 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  y  e.  J )  /\  (
c  C_  x  /\  d  C_  y  /\  (
x  i^i  y )  =  (/) ) )  -> 
( x  i^i  y
)  =  (/) )
18 simpllr 758 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  y  e.  J )  /\  (
c  C_  x  /\  d  C_  y  /\  (
x  i^i  y )  =  (/) ) )  ->  x  e.  J )
19 elssuni 4224 . . . . . . . . . . . . . . 15  |-  ( x  e.  J  ->  x  C_ 
U. J )
20 reldisj 3825 . . . . . . . . . . . . . . 15  |-  ( x 
C_  U. J  ->  (
( x  i^i  y
)  =  (/)  <->  x  C_  ( U. J  \  y
) ) )
2118, 19, 203syl 20 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  y  e.  J )  /\  (
c  C_  x  /\  d  C_  y  /\  (
x  i^i  y )  =  (/) ) )  -> 
( ( x  i^i  y )  =  (/)  <->  x  C_  ( U. J  \ 
y ) ) )
2217, 21mpbid 210 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  y  e.  J )  /\  (
c  C_  x  /\  d  C_  y  /\  (
x  i^i  y )  =  (/) ) )  ->  x  C_  ( U. J  \  y ) )
2314clsss2 18803 . . . . . . . . . . . . . 14  |-  ( ( ( U. J  \ 
y )  e.  (
Clsd `  J )  /\  x  C_  ( U. J  \  y ) )  ->  ( ( cls `  J ) `  x
)  C_  ( U. J  \  y ) )
24 ssdifin0 3863 . . . . . . . . . . . . . 14  |-  ( ( ( cls `  J
) `  x )  C_  ( U. J  \ 
y )  ->  (
( ( cls `  J
) `  x )  i^i  y )  =  (/) )
2523, 24syl 16 . . . . . . . . . . . . 13  |-  ( ( ( U. J  \ 
y )  e.  (
Clsd `  J )  /\  x  C_  ( U. J  \  y ) )  ->  ( ( ( cls `  J ) `
 x )  i^i  y )  =  (/) )
2616, 22, 25syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  y  e.  J )  /\  (
c  C_  x  /\  d  C_  y  /\  (
x  i^i  y )  =  (/) ) )  -> 
( ( ( cls `  J ) `  x
)  i^i  y )  =  (/) )
27 sseq0 3772 . . . . . . . . . . . 12  |-  ( ( ( ( ( cls `  J ) `  x
)  i^i  d )  C_  ( ( ( cls `  J ) `  x
)  i^i  y )  /\  ( ( ( cls `  J ) `  x
)  i^i  y )  =  (/) )  ->  (
( ( cls `  J
) `  x )  i^i  d )  =  (/) )
2811, 26, 27syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  y  e.  J )  /\  (
c  C_  x  /\  d  C_  y  /\  (
x  i^i  y )  =  (/) ) )  -> 
( ( ( cls `  J ) `  x
)  i^i  d )  =  (/) )
298, 28jca 532 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  y  e.  J )  /\  (
c  C_  x  /\  d  C_  y  /\  (
x  i^i  y )  =  (/) ) )  -> 
( c  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  d )  =  (/) ) )
3029ex 434 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  y  e.  J
)  ->  ( (
c  C_  x  /\  d  C_  y  /\  (
x  i^i  y )  =  (/) )  ->  (
c  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  d )  =  (/) ) ) )
3130rexlimdva 2941 . . . . . . . 8  |-  ( ( J  e.  Top  /\  x  e.  J )  ->  ( E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y
)  =  (/) )  -> 
( c  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  d )  =  (/) ) ) )
3231reximdva 2928 . . . . . . 7  |-  ( J  e.  Top  ->  ( E. x  e.  J  E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y
)  =  (/) )  ->  E. x  e.  J  ( c  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  d )  =  (/) ) ) )
3332imim2d 52 . . . . . 6  |-  ( J  e.  Top  ->  (
( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y
)  =  (/) ) )  ->  ( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  ( c  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  d )  =  (/) ) ) ) )
3433ralimdv 2831 . . . . 5  |-  ( J  e.  Top  ->  ( A. d  e.  ( Clsd `  J ) ( ( c  i^i  d
)  =  (/)  ->  E. x  e.  J  E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y )  =  (/) ) )  ->  A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  ( c  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  d )  =  (/) ) ) ) )
3534ralimdv 2831 . . . 4  |-  ( J  e.  Top  ->  ( A. c  e.  ( Clsd `  J ) A. d  e.  ( Clsd `  J ) ( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y )  =  (/) ) )  ->  A. c  e.  ( Clsd `  J
) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  ( c  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  d )  =  (/) ) ) ) )
3635imp 429 . . 3  |-  ( ( J  e.  Top  /\  A. c  e.  ( Clsd `  J ) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y
)  =  (/) ) ) )  ->  A. c  e.  ( Clsd `  J
) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  ( c  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  d )  =  (/) ) ) )
37 isnrm2 19089 . . 3  |-  ( J  e.  Nrm  <->  ( J  e.  Top  /\  A. c  e.  ( Clsd `  J
) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  ( c  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  d )  =  (/) ) ) ) )
387, 36, 37sylanbrc 664 . 2  |-  ( ( J  e.  Top  /\  A. c  e.  ( Clsd `  J ) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y
)  =  (/) ) ) )  ->  J  e.  Nrm )
396, 38impbii 188 1  |-  ( J  e.  Nrm  <->  ( J  e.  Top  /\  A. c  e.  ( Clsd `  J
) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. x  e.  J  E. y  e.  J  ( c  C_  x  /\  d  C_  y  /\  ( x  i^i  y
)  =  (/) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2796   E.wrex 2797    \ cdif 3428    i^i cin 3430    C_ wss 3431   (/)c0 3740   U.cuni 4194   ` cfv 5521   Topctop 18625   Clsdccld 18747   clsccl 18749   Nrmcnrm 19041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-ral 2801  df-rex 2802  df-reu 2803  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4195  df-int 4232  df-iun 4276  df-iin 4277  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4739  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-top 18630  df-cld 18750  df-cls 18752  df-nrm 19048
This theorem is referenced by:  metnrm  20565
  Copyright terms: Public domain W3C validator