MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnrm2 Structured version   Unicode version

Theorem isnrm2 18967
Description: An alternate characterization of normality. This is the important property in the proof of Urysohn's lemma. (Contributed by Jeff Hankins, 1-Feb-2010.) (Proof shortened by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
isnrm2  |-  ( J  e.  Nrm  <->  ( J  e.  Top  /\  A. c  e.  ( Clsd `  J
) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) ) ) )
Distinct variable group:    c, d, o, J

Proof of Theorem isnrm2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 nrmtop 18945 . . 3  |-  ( J  e.  Nrm  ->  J  e.  Top )
2 nrmsep2 18965 . . . . . 6  |-  ( ( J  e.  Nrm  /\  ( c  e.  (
Clsd `  J )  /\  d  e.  ( Clsd `  J )  /\  ( c  i^i  d
)  =  (/) ) )  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) )
323exp2 1205 . . . . 5  |-  ( J  e.  Nrm  ->  (
c  e.  ( Clsd `  J )  ->  (
d  e.  ( Clsd `  J )  ->  (
( c  i^i  d
)  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J
) `  o )  i^i  d )  =  (/) ) ) ) ) )
43impd 431 . . . 4  |-  ( J  e.  Nrm  ->  (
( c  e.  (
Clsd `  J )  /\  d  e.  ( Clsd `  J ) )  ->  ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) ) ) )
54ralrimivv 2812 . . 3  |-  ( J  e.  Nrm  ->  A. c  e.  ( Clsd `  J
) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) ) )
61, 5jca 532 . 2  |-  ( J  e.  Nrm  ->  ( J  e.  Top  /\  A. c  e.  ( Clsd `  J ) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) ) ) )
7 simpl 457 . . 3  |-  ( ( J  e.  Top  /\  A. c  e.  ( Clsd `  J ) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) ) )  ->  J  e.  Top )
8 eqid 2443 . . . . . . . . . . 11  |-  U. J  =  U. J
98opncld 18642 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  x  e.  J )  ->  ( U. J  \  x )  e.  (
Clsd `  J )
)
109adantr 465 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  ( U. J  \  x )  e.  ( Clsd `  J
) )
11 ineq2 3551 . . . . . . . . . . . 12  |-  ( d  =  ( U. J  \  x )  ->  (
c  i^i  d )  =  ( c  i^i  ( U. J  \  x ) ) )
1211eqeq1d 2451 . . . . . . . . . . 11  |-  ( d  =  ( U. J  \  x )  ->  (
( c  i^i  d
)  =  (/)  <->  ( c  i^i  ( U. J  \  x ) )  =  (/) ) )
13 ineq2 3551 . . . . . . . . . . . . . 14  |-  ( d  =  ( U. J  \  x )  ->  (
( ( cls `  J
) `  o )  i^i  d )  =  ( ( ( cls `  J
) `  o )  i^i  ( U. J  \  x ) ) )
1413eqeq1d 2451 . . . . . . . . . . . . 13  |-  ( d  =  ( U. J  \  x )  ->  (
( ( ( cls `  J ) `  o
)  i^i  d )  =  (/)  <->  ( ( ( cls `  J ) `
 o )  i^i  ( U. J  \  x ) )  =  (/) ) )
1514anbi2d 703 . . . . . . . . . . . 12  |-  ( d  =  ( U. J  \  x )  ->  (
( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) )  <->  ( c  C_  o  /\  ( ( ( cls `  J
) `  o )  i^i  ( U. J  \  x ) )  =  (/) ) ) )
1615rexbidv 2741 . . . . . . . . . . 11  |-  ( d  =  ( U. J  \  x )  ->  ( E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) )  <->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J
) `  o )  i^i  ( U. J  \  x ) )  =  (/) ) ) )
1712, 16imbi12d 320 . . . . . . . . . 10  |-  ( d  =  ( U. J  \  x )  ->  (
( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) )  <->  ( (
c  i^i  ( U. J  \  x ) )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J
) `  o )  i^i  ( U. J  \  x ) )  =  (/) ) ) ) )
1817rspcv 3074 . . . . . . . . 9  |-  ( ( U. J  \  x
)  e.  ( Clsd `  J )  ->  ( A. d  e.  ( Clsd `  J ) ( ( c  i^i  d
)  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J
) `  o )  i^i  d )  =  (/) ) )  ->  (
( c  i^i  ( U. J  \  x
) )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  ( U. J  \  x ) )  =  (/) ) ) ) )
1910, 18syl 16 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  ( A. d  e.  ( Clsd `  J ) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J
) `  o )  i^i  d )  =  (/) ) )  ->  (
( c  i^i  ( U. J  \  x
) )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  ( U. J  \  x ) )  =  (/) ) ) ) )
20 inssdif0 3751 . . . . . . . . . 10  |-  ( ( c  i^i  U. J
)  C_  x  <->  ( c  i^i  ( U. J  \  x ) )  =  (/) )
218cldss 18638 . . . . . . . . . . . . 13  |-  ( c  e.  ( Clsd `  J
)  ->  c  C_  U. J )
2221adantl 466 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  c  C_  U. J )
23 df-ss 3347 . . . . . . . . . . . 12  |-  ( c 
C_  U. J  <->  ( c  i^i  U. J )  =  c )
2422, 23sylib 196 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  ( c  i^i  U. J )  =  c )
2524sseq1d 3388 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  ( (
c  i^i  U. J ) 
C_  x  <->  c  C_  x ) )
2620, 25syl5bbr 259 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  ( (
c  i^i  ( U. J  \  x ) )  =  (/)  <->  c  C_  x
) )
27 inssdif0 3751 . . . . . . . . . . . 12  |-  ( ( ( ( cls `  J
) `  o )  i^i  U. J )  C_  x 
<->  ( ( ( cls `  J ) `  o
)  i^i  ( U. J  \  x ) )  =  (/) )
28 simpll 753 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  J  e.  Top )
29 elssuni 4126 . . . . . . . . . . . . . . 15  |-  ( o  e.  J  ->  o  C_ 
U. J )
308clsss3 18668 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  Top  /\  o  C_  U. J )  ->  ( ( cls `  J ) `  o
)  C_  U. J )
3128, 29, 30syl2an 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  c  e.  ( Clsd `  J
) )  /\  o  e.  J )  ->  (
( cls `  J
) `  o )  C_ 
U. J )
32 df-ss 3347 . . . . . . . . . . . . . 14  |-  ( ( ( cls `  J
) `  o )  C_ 
U. J  <->  ( (
( cls `  J
) `  o )  i^i  U. J )  =  ( ( cls `  J
) `  o )
)
3331, 32sylib 196 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  c  e.  ( Clsd `  J
) )  /\  o  e.  J )  ->  (
( ( cls `  J
) `  o )  i^i  U. J )  =  ( ( cls `  J
) `  o )
)
3433sseq1d 3388 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  c  e.  ( Clsd `  J
) )  /\  o  e.  J )  ->  (
( ( ( cls `  J ) `  o
)  i^i  U. J ) 
C_  x  <->  ( ( cls `  J ) `  o )  C_  x
) )
3527, 34syl5bbr 259 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  c  e.  ( Clsd `  J
) )  /\  o  e.  J )  ->  (
( ( ( cls `  J ) `  o
)  i^i  ( U. J  \  x ) )  =  (/)  <->  ( ( cls `  J ) `  o
)  C_  x )
)
3635anbi2d 703 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  c  e.  ( Clsd `  J
) )  /\  o  e.  J )  ->  (
( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  ( U. J  \  x ) )  =  (/) )  <->  ( c  C_  o  /\  ( ( cls `  J ) `
 o )  C_  x ) ) )
3736rexbidva 2737 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  ( E. o  e.  J  (
c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  ( U. J  \  x ) )  =  (/) )  <->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J ) `
 o )  C_  x ) ) )
3826, 37imbi12d 320 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  ( (
( c  i^i  ( U. J  \  x
) )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  ( U. J  \  x ) )  =  (/) ) )  <->  ( c  C_  x  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J ) `
 o )  C_  x ) ) ) )
3919, 38sylibd 214 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  ( A. d  e.  ( Clsd `  J ) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J
) `  o )  i^i  d )  =  (/) ) )  ->  (
c  C_  x  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J
) `  o )  C_  x ) ) ) )
4039ralimdva 2799 . . . . . 6  |-  ( ( J  e.  Top  /\  x  e.  J )  ->  ( A. c  e.  ( Clsd `  J
) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) )  ->  A. c  e.  ( Clsd `  J ) ( c  C_  x  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J
) `  o )  C_  x ) ) ) )
41 elin 3544 . . . . . . . . . 10  |-  ( c  e.  ( ( Clsd `  J )  i^i  ~P x )  <->  ( c  e.  ( Clsd `  J
)  /\  c  e.  ~P x ) )
42 selpw 3872 . . . . . . . . . . 11  |-  ( c  e.  ~P x  <->  c  C_  x )
4342anbi2i 694 . . . . . . . . . 10  |-  ( ( c  e.  ( Clsd `  J )  /\  c  e.  ~P x )  <->  ( c  e.  ( Clsd `  J
)  /\  c  C_  x ) )
4441, 43bitri 249 . . . . . . . . 9  |-  ( c  e.  ( ( Clsd `  J )  i^i  ~P x )  <->  ( c  e.  ( Clsd `  J
)  /\  c  C_  x ) )
4544imbi1i 325 . . . . . . . 8  |-  ( ( c  e.  ( (
Clsd `  J )  i^i  ~P x )  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J
) `  o )  C_  x ) )  <->  ( (
c  e.  ( Clsd `  J )  /\  c  C_  x )  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J ) `
 o )  C_  x ) ) )
46 impexp 446 . . . . . . . 8  |-  ( ( ( c  e.  (
Clsd `  J )  /\  c  C_  x )  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J
) `  o )  C_  x ) )  <->  ( c  e.  ( Clsd `  J
)  ->  ( c  C_  x  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J ) `
 o )  C_  x ) ) ) )
4745, 46bitri 249 . . . . . . 7  |-  ( ( c  e.  ( (
Clsd `  J )  i^i  ~P x )  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J
) `  o )  C_  x ) )  <->  ( c  e.  ( Clsd `  J
)  ->  ( c  C_  x  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J ) `
 o )  C_  x ) ) ) )
4847ralbii2 2748 . . . . . 6  |-  ( A. c  e.  ( ( Clsd `  J )  i^i 
~P x ) E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J
) `  o )  C_  x )  <->  A. c  e.  ( Clsd `  J
) ( c  C_  x  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J
) `  o )  C_  x ) ) )
4940, 48syl6ibr 227 . . . . 5  |-  ( ( J  e.  Top  /\  x  e.  J )  ->  ( A. c  e.  ( Clsd `  J
) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) )  ->  A. c  e.  (
( Clsd `  J )  i^i  ~P x ) E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J
) `  o )  C_  x ) ) )
5049ralrimdva 2811 . . . 4  |-  ( J  e.  Top  ->  ( A. c  e.  ( Clsd `  J ) A. d  e.  ( Clsd `  J ) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J
) `  o )  i^i  d )  =  (/) ) )  ->  A. x  e.  J  A. c  e.  ( ( Clsd `  J
)  i^i  ~P x
) E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J ) `  o
)  C_  x )
) )
5150imp 429 . . 3  |-  ( ( J  e.  Top  /\  A. c  e.  ( Clsd `  J ) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) ) )  ->  A. x  e.  J  A. c  e.  (
( Clsd `  J )  i^i  ~P x ) E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J
) `  o )  C_  x ) )
52 isnrm 18944 . . 3  |-  ( J  e.  Nrm  <->  ( J  e.  Top  /\  A. x  e.  J  A. c  e.  ( ( Clsd `  J
)  i^i  ~P x
) E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J ) `  o
)  C_  x )
) )
537, 51, 52sylanbrc 664 . 2  |-  ( ( J  e.  Top  /\  A. c  e.  ( Clsd `  J ) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) ) )  ->  J  e.  Nrm )
546, 53impbii 188 1  |-  ( J  e.  Nrm  <->  ( J  e.  Top  /\  A. c  e.  ( Clsd `  J
) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2720   E.wrex 2721    \ cdif 3330    i^i cin 3332    C_ wss 3333   (/)c0 3642   ~Pcpw 3865   U.cuni 4096   ` cfv 5423   Topctop 18503   Clsdccld 18625   clsccl 18627   Nrmcnrm 18919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-iin 4179  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-top 18508  df-cld 18628  df-cls 18630  df-nrm 18926
This theorem is referenced by:  isnrm3  18968
  Copyright terms: Public domain W3C validator