Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnrg Structured version   Unicode version

Theorem isnrg 21042
 Description: A normed ring is a ring with a norm that makes it into a normed group, and such that the norm is an absolute value on the ring. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
isnrg.1
isnrg.2 AbsVal
Assertion
Ref Expression
isnrg NrmRing NrmGrp

Proof of Theorem isnrg
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 fveq2 5856 . . . 4
2 isnrg.1 . . . 4
31, 2syl6eqr 2502 . . 3
4 fveq2 5856 . . . 4 AbsVal AbsVal
5 isnrg.2 . . . 4 AbsVal
64, 5syl6eqr 2502 . . 3 AbsVal
73, 6eleq12d 2525 . 2 AbsVal
8 df-nrg 20979 . 2 NrmRing NrmGrp AbsVal
97, 8elrab2 3245 1 NrmRing NrmGrp
 Colors of variables: wff setvar class Syntax hints:   wb 184   wa 369   wceq 1383   wcel 1804  cfv 5578  AbsValcabv 17339  cnm 20970  NrmGrpcngp 20971  NrmRingcnrg 20973 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-rex 2799  df-rab 2802  df-v 3097  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-br 4438  df-iota 5541  df-fv 5586  df-nrg 20979 This theorem is referenced by:  nrgabv  21043  nrgngp  21044  subrgnrg  21055  tngnrg  21056  cnnrg  21161  zhmnrg  27821
 Copyright terms: Public domain W3C validator