MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnmhm Structured version   Unicode version

Theorem isnmhm 21231
Description: A normed module homomorphism is a left module homomorphism which is also a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.)
Assertion
Ref Expression
isnmhm  |-  ( F  e.  ( S NMHom  T
)  <->  ( ( S  e. NrmMod  /\  T  e. NrmMod )  /\  ( F  e.  ( S LMHom  T )  /\  F  e.  ( S NGHom  T ) ) ) )

Proof of Theorem isnmhm
Dummy variables  t 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nmhm 21195 . . 3  |- NMHom  =  ( s  e. NrmMod ,  t  e. NrmMod  |->  ( ( s LMHom  t
)  i^i  ( s NGHom  t ) ) )
21elmpt2cl 6502 . 2  |-  ( F  e.  ( S NMHom  T
)  ->  ( S  e. NrmMod  /\  T  e. NrmMod )
)
3 oveq12 6290 . . . . . 6  |-  ( ( s  =  S  /\  t  =  T )  ->  ( s LMHom  t )  =  ( S LMHom  T
) )
4 oveq12 6290 . . . . . 6  |-  ( ( s  =  S  /\  t  =  T )  ->  ( s NGHom  t )  =  ( S NGHom  T
) )
53, 4ineq12d 3686 . . . . 5  |-  ( ( s  =  S  /\  t  =  T )  ->  ( ( s LMHom  t
)  i^i  ( s NGHom  t ) )  =  ( ( S LMHom  T
)  i^i  ( S NGHom  T ) ) )
6 ovex 6309 . . . . . 6  |-  ( S LMHom 
T )  e.  _V
76inex1 4578 . . . . 5  |-  ( ( S LMHom  T )  i^i  ( S NGHom  T ) )  e.  _V
85, 1, 7ovmpt2a 6418 . . . 4  |-  ( ( S  e. NrmMod  /\  T  e. NrmMod
)  ->  ( S NMHom  T )  =  ( ( S LMHom  T )  i^i  ( S NGHom  T ) ) )
98eleq2d 2513 . . 3  |-  ( ( S  e. NrmMod  /\  T  e. NrmMod
)  ->  ( F  e.  ( S NMHom  T )  <-> 
F  e.  ( ( S LMHom  T )  i^i  ( S NGHom  T ) ) ) )
10 elin 3672 . . 3  |-  ( F  e.  ( ( S LMHom 
T )  i^i  ( S NGHom  T ) )  <->  ( F  e.  ( S LMHom  T )  /\  F  e.  ( S NGHom  T ) ) )
119, 10syl6bb 261 . 2  |-  ( ( S  e. NrmMod  /\  T  e. NrmMod
)  ->  ( F  e.  ( S NMHom  T )  <-> 
( F  e.  ( S LMHom  T )  /\  F  e.  ( S NGHom  T ) ) ) )
122, 11biadan2 642 1  |-  ( F  e.  ( S NMHom  T
)  <->  ( ( S  e. NrmMod  /\  T  e. NrmMod )  /\  ( F  e.  ( S LMHom  T )  /\  F  e.  ( S NGHom  T ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804    i^i cin 3460  (class class class)co 6281   LMHom clmhm 17644  NrmModcnlm 21079   NGHom cnghm 21191   NMHom cnmhm 21192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-sbc 3314  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-br 4438  df-opab 4496  df-id 4785  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-iota 5541  df-fun 5580  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-nmhm 21195
This theorem is referenced by:  nmhmrcl1  21232  nmhmrcl2  21233  nmhmlmhm  21234  nmhmnghm  21235  isnmhm2  21237  idnmhm  21239  0nmhm  21240  nmhmco  21241  nmhmplusg  21242  nmhmcn  21581
  Copyright terms: Public domain W3C validator