MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnmhm Structured version   Unicode version

Theorem isnmhm 21543
Description: A normed module homomorphism is a left module homomorphism which is also a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.)
Assertion
Ref Expression
isnmhm  |-  ( F  e.  ( S NMHom  T
)  <->  ( ( S  e. NrmMod  /\  T  e. NrmMod )  /\  ( F  e.  ( S LMHom  T )  /\  F  e.  ( S NGHom  T ) ) ) )

Proof of Theorem isnmhm
Dummy variables  t 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nmhm 21507 . . 3  |- NMHom  =  ( s  e. NrmMod ,  t  e. NrmMod  |->  ( ( s LMHom  t
)  i^i  ( s NGHom  t ) ) )
21elmpt2cl 6497 . 2  |-  ( F  e.  ( S NMHom  T
)  ->  ( S  e. NrmMod  /\  T  e. NrmMod )
)
3 oveq12 6286 . . . . . 6  |-  ( ( s  =  S  /\  t  =  T )  ->  ( s LMHom  t )  =  ( S LMHom  T
) )
4 oveq12 6286 . . . . . 6  |-  ( ( s  =  S  /\  t  =  T )  ->  ( s NGHom  t )  =  ( S NGHom  T
) )
53, 4ineq12d 3641 . . . . 5  |-  ( ( s  =  S  /\  t  =  T )  ->  ( ( s LMHom  t
)  i^i  ( s NGHom  t ) )  =  ( ( S LMHom  T
)  i^i  ( S NGHom  T ) ) )
6 ovex 6305 . . . . . 6  |-  ( S LMHom 
T )  e.  _V
76inex1 4534 . . . . 5  |-  ( ( S LMHom  T )  i^i  ( S NGHom  T ) )  e.  _V
85, 1, 7ovmpt2a 6413 . . . 4  |-  ( ( S  e. NrmMod  /\  T  e. NrmMod
)  ->  ( S NMHom  T )  =  ( ( S LMHom  T )  i^i  ( S NGHom  T ) ) )
98eleq2d 2472 . . 3  |-  ( ( S  e. NrmMod  /\  T  e. NrmMod
)  ->  ( F  e.  ( S NMHom  T )  <-> 
F  e.  ( ( S LMHom  T )  i^i  ( S NGHom  T ) ) ) )
10 elin 3625 . . 3  |-  ( F  e.  ( ( S LMHom 
T )  i^i  ( S NGHom  T ) )  <->  ( F  e.  ( S LMHom  T )  /\  F  e.  ( S NGHom  T ) ) )
119, 10syl6bb 261 . 2  |-  ( ( S  e. NrmMod  /\  T  e. NrmMod
)  ->  ( F  e.  ( S NMHom  T )  <-> 
( F  e.  ( S LMHom  T )  /\  F  e.  ( S NGHom  T ) ) ) )
122, 11biadan2 640 1  |-  ( F  e.  ( S NMHom  T
)  <->  ( ( S  e. NrmMod  /\  T  e. NrmMod )  /\  ( F  e.  ( S LMHom  T )  /\  F  e.  ( S NGHom  T ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842    i^i cin 3412  (class class class)co 6277   LMHom clmhm 17983  NrmModcnlm 21391   NGHom cnghm 21503   NMHom cnmhm 21504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-rab 2762  df-v 3060  df-sbc 3277  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-br 4395  df-opab 4453  df-id 4737  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-iota 5532  df-fun 5570  df-fv 5576  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-nmhm 21507
This theorem is referenced by:  nmhmrcl1  21544  nmhmrcl2  21545  nmhmlmhm  21546  nmhmnghm  21547  isnmhm2  21549  idnmhm  21551  0nmhm  21552  nmhmco  21553  nmhmplusg  21554  nmhmcn  21893
  Copyright terms: Public domain W3C validator