MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnlly Structured version   Unicode version

Theorem isnlly 20415
Description: The property of being an n-locally  A topological space. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
isnlly  |-  ( J  e. 𝑛Locally  A  <->  ( J  e. 
Top  /\  A. x  e.  J  A. y  e.  x  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x ) ( Jt  u )  e.  A
) )
Distinct variable groups:    x, u, y, A    u, J, x, y

Proof of Theorem isnlly
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 fveq2 5881 . . . . . . 7  |-  ( j  =  J  ->  ( nei `  j )  =  ( nei `  J
) )
21fveq1d 5883 . . . . . 6  |-  ( j  =  J  ->  (
( nei `  j
) `  { y } )  =  ( ( nei `  J
) `  { y } ) )
32ineq1d 3669 . . . . 5  |-  ( j  =  J  ->  (
( ( nei `  j
) `  { y } )  i^i  ~P x )  =  ( ( ( nei `  J
) `  { y } )  i^i  ~P x ) )
4 oveq1 6312 . . . . . 6  |-  ( j  =  J  ->  (
jt  u )  =  ( Jt  u ) )
54eleq1d 2498 . . . . 5  |-  ( j  =  J  ->  (
( jt  u )  e.  A  <->  ( Jt  u )  e.  A
) )
63, 5rexeqbidv 3047 . . . 4  |-  ( j  =  J  ->  ( E. u  e.  (
( ( nei `  j
) `  { y } )  i^i  ~P x ) ( jt  u )  e.  A  <->  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x ) ( Jt  u )  e.  A
) )
76ralbidv 2871 . . 3  |-  ( j  =  J  ->  ( A. y  e.  x  E. u  e.  (
( ( nei `  j
) `  { y } )  i^i  ~P x ) ( jt  u )  e.  A  <->  A. y  e.  x  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x ) ( Jt  u )  e.  A
) )
87raleqbi1dv 3040 . 2  |-  ( j  =  J  ->  ( A. x  e.  j  A. y  e.  x  E. u  e.  (
( ( nei `  j
) `  { y } )  i^i  ~P x ) ( jt  u )  e.  A  <->  A. x  e.  J  A. y  e.  x  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x ) ( Jt  u )  e.  A
) )
9 df-nlly 20413 . 2  |- 𝑛Locally  A  =  { j  e.  Top  | 
A. x  e.  j 
A. y  e.  x  E. u  e.  (
( ( nei `  j
) `  { y } )  i^i  ~P x ) ( jt  u )  e.  A }
108, 9elrab2 3237 1  |-  ( J  e. 𝑛Locally  A  <->  ( J  e. 
Top  /\  A. x  e.  J  A. y  e.  x  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x ) ( Jt  u )  e.  A
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870   A.wral 2782   E.wrex 2783    i^i cin 3441   ~Pcpw 3985   {csn 4002   ` cfv 5601  (class class class)co 6305   ↾t crest 15278   Topctop 19848   neicnei 20044  𝑛Locally cnlly 20411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-iota 5565  df-fv 5609  df-ov 6308  df-nlly 20413
This theorem is referenced by:  nllytop  20419  nllyi  20421  llynlly  20423  nllyss  20426  nllyrest  20432  nllyidm  20435  hausllycmp  20440  cldllycmp  20441  txnlly  20583  cnllycmp  21880
  Copyright terms: Public domain W3C validator