MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnirred Structured version   Unicode version

Theorem isnirred 17871
Description: The property of being a non-irreducible (reducible) element in a ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irred.1  |-  B  =  ( Base `  R
)
irred.2  |-  U  =  (Unit `  R )
irred.3  |-  I  =  (Irred `  R )
irred.4  |-  N  =  ( B  \  U
)
irred.5  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
isnirred  |-  ( X  e.  B  ->  ( -.  X  e.  I  <->  ( X  e.  U  \/  E. x  e.  N  E. y  e.  N  (
x  .x.  y )  =  X ) ) )
Distinct variable groups:    x, y, N    x, R, y    x, X, y
Allowed substitution hints:    B( x, y)    .x. ( x, y)    U( x, y)    I( x, y)

Proof of Theorem isnirred
StepHypRef Expression
1 irred.4 . . . . . . 7  |-  N  =  ( B  \  U
)
21eleq2i 2498 . . . . . 6  |-  ( X  e.  N  <->  X  e.  ( B  \  U ) )
3 eldif 3389 . . . . . 6  |-  ( X  e.  ( B  \  U )  <->  ( X  e.  B  /\  -.  X  e.  U ) )
42, 3bitri 252 . . . . 5  |-  ( X  e.  N  <->  ( X  e.  B  /\  -.  X  e.  U ) )
54baibr 912 . . . 4  |-  ( X  e.  B  ->  ( -.  X  e.  U  <->  X  e.  N ) )
6 df-ne 2601 . . . . . . . . 9  |-  ( ( x  .x.  y )  =/=  X  <->  -.  (
x  .x.  y )  =  X )
76ralbii 2796 . . . . . . . 8  |-  ( A. y  e.  N  (
x  .x.  y )  =/=  X  <->  A. y  e.  N  -.  ( x  .x.  y
)  =  X )
8 ralnex 2811 . . . . . . . 8  |-  ( A. y  e.  N  -.  ( x  .x.  y )  =  X  <->  -.  E. y  e.  N  ( x  .x.  y )  =  X )
97, 8bitri 252 . . . . . . 7  |-  ( A. y  e.  N  (
x  .x.  y )  =/=  X  <->  -.  E. y  e.  N  ( x  .x.  y )  =  X )
109ralbii 2796 . . . . . 6  |-  ( A. x  e.  N  A. y  e.  N  (
x  .x.  y )  =/=  X  <->  A. x  e.  N  -.  E. y  e.  N  ( x  .x.  y )  =  X )
11 ralnex 2811 . . . . . 6  |-  ( A. x  e.  N  -.  E. y  e.  N  ( x  .x.  y )  =  X  <->  -.  E. x  e.  N  E. y  e.  N  ( x  .x.  y )  =  X )
1210, 11bitr2i 253 . . . . 5  |-  ( -. 
E. x  e.  N  E. y  e.  N  ( x  .x.  y )  =  X  <->  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  X
)
1312a1i 11 . . . 4  |-  ( X  e.  B  ->  ( -.  E. x  e.  N  E. y  e.  N  ( x  .x.  y )  =  X  <->  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  X
) )
145, 13anbi12d 715 . . 3  |-  ( X  e.  B  ->  (
( -.  X  e.  U  /\  -.  E. x  e.  N  E. y  e.  N  (
x  .x.  y )  =  X )  <->  ( X  e.  N  /\  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  X
) ) )
15 ioran 492 . . 3  |-  ( -.  ( X  e.  U  \/  E. x  e.  N  E. y  e.  N  ( x  .x.  y )  =  X )  <->  ( -.  X  e.  U  /\  -.  E. x  e.  N  E. y  e.  N  ( x  .x.  y )  =  X ) )
16 irred.1 . . . 4  |-  B  =  ( Base `  R
)
17 irred.2 . . . 4  |-  U  =  (Unit `  R )
18 irred.3 . . . 4  |-  I  =  (Irred `  R )
19 irred.5 . . . 4  |-  .x.  =  ( .r `  R )
2016, 17, 18, 1, 19isirred 17870 . . 3  |-  ( X  e.  I  <->  ( X  e.  N  /\  A. x  e.  N  A. y  e.  N  ( x  .x.  y )  =/=  X
) )
2114, 15, 203bitr4g 291 . 2  |-  ( X  e.  B  ->  ( -.  ( X  e.  U  \/  E. x  e.  N  E. y  e.  N  ( x  .x.  y )  =  X )  <->  X  e.  I ) )
2221con1bid 331 1  |-  ( X  e.  B  ->  ( -.  X  e.  I  <->  ( X  e.  U  \/  E. x  e.  N  E. y  e.  N  (
x  .x.  y )  =  X ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    = wceq 1437    e. wcel 1872    =/= wne 2599   A.wral 2714   E.wrex 2715    \ cdif 3376   ` cfv 5544  (class class class)co 6249   Basecbs 15064   .rcmulr 15134  Unitcui 17810  Irredcir 17811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-ral 2719  df-rex 2720  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-nul 3705  df-if 3855  df-sn 3942  df-pr 3944  df-op 3948  df-uni 4163  df-br 4367  df-opab 4426  df-mpt 4427  df-id 4711  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-iota 5508  df-fun 5546  df-fv 5552  df-ov 6252  df-irred 17814
This theorem is referenced by:  irredn0  17874  irredrmul  17878
  Copyright terms: Public domain W3C validator