MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isngp4 Structured version   Unicode version

Theorem isngp4 20997
Description: Express the property of being a normed group purely in terms of right-translation invariance of the metric instead of using the definition of norm (which itself uses the metric). (Contributed by Mario Carneiro, 29-Oct-2015.)
Hypotheses
Ref Expression
ngprcan.x  |-  X  =  ( Base `  G
)
ngprcan.p  |-  .+  =  ( +g  `  G )
ngprcan.d  |-  D  =  ( dist `  G
)
Assertion
Ref Expression
isngp4  |-  ( G  e. NrmGrp 
<->  ( G  e.  Grp  /\  G  e.  MetSp  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( x  .+  z
) D ( y 
.+  z ) )  =  ( x D y ) ) )
Distinct variable groups:    x, y,
z, D    x, G, y, z    z,  .+    x, X, y, z
Allowed substitution hints:    .+ ( x, y)

Proof of Theorem isngp4
StepHypRef Expression
1 ngpgrp 20985 . . 3  |-  ( G  e. NrmGrp  ->  G  e.  Grp )
2 ngpms 20986 . . 3  |-  ( G  e. NrmGrp  ->  G  e.  MetSp )
3 ngprcan.x . . . . 5  |-  X  =  ( Base `  G
)
4 ngprcan.p . . . . 5  |-  .+  =  ( +g  `  G )
5 ngprcan.d . . . . 5  |-  D  =  ( dist `  G
)
63, 4, 5ngprcan 20995 . . . 4  |-  ( ( G  e. NrmGrp  /\  (
x  e.  X  /\  y  e.  X  /\  z  e.  X )
)  ->  ( (
x  .+  z ) D ( y  .+  z ) )  =  ( x D y ) )
76ralrimivvva 2863 . . 3  |-  ( G  e. NrmGrp  ->  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( x  .+  z ) D ( y  .+  z ) )  =  ( x D y ) )
81, 2, 73jca 1175 . 2  |-  ( G  e. NrmGrp  ->  ( G  e. 
Grp  /\  G  e.  MetSp  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( x  .+  z ) D ( y  .+  z ) )  =  ( x D y ) ) )
9 simp1 995 . . 3  |-  ( ( G  e.  Grp  /\  G  e.  MetSp  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( x  .+  z
) D ( y 
.+  z ) )  =  ( x D y ) )  ->  G  e.  Grp )
10 simp2 996 . . 3  |-  ( ( G  e.  Grp  /\  G  e.  MetSp  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( x  .+  z
) D ( y 
.+  z ) )  =  ( x D y ) )  ->  G  e.  MetSp )
11 eqid 2441 . . . . . . . . 9  |-  ( invg `  G )  =  ( invg `  G )
123, 11grpinvcl 15964 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  y  e.  X )  ->  ( ( invg `  G ) `  y
)  e.  X )
1312ad2ant2rl 748 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( x  e.  X  /\  y  e.  X
) )  ->  (
( invg `  G ) `  y
)  e.  X )
14 eqcom 2450 . . . . . . . . 9  |-  ( ( ( x  .+  z
) D ( y 
.+  z ) )  =  ( x D y )  <->  ( x D y )  =  ( ( x  .+  z ) D ( y  .+  z ) ) )
15 oveq2 6285 . . . . . . . . . . 11  |-  ( z  =  ( ( invg `  G ) `
 y )  -> 
( x  .+  z
)  =  ( x 
.+  ( ( invg `  G ) `
 y ) ) )
16 oveq2 6285 . . . . . . . . . . 11  |-  ( z  =  ( ( invg `  G ) `
 y )  -> 
( y  .+  z
)  =  ( y 
.+  ( ( invg `  G ) `
 y ) ) )
1715, 16oveq12d 6295 . . . . . . . . . 10  |-  ( z  =  ( ( invg `  G ) `
 y )  -> 
( ( x  .+  z ) D ( y  .+  z ) )  =  ( ( x  .+  ( ( invg `  G
) `  y )
) D ( y 
.+  ( ( invg `  G ) `
 y ) ) ) )
1817eqeq2d 2455 . . . . . . . . 9  |-  ( z  =  ( ( invg `  G ) `
 y )  -> 
( ( x D y )  =  ( ( x  .+  z
) D ( y 
.+  z ) )  <-> 
( x D y )  =  ( ( x  .+  ( ( invg `  G
) `  y )
) D ( y 
.+  ( ( invg `  G ) `
 y ) ) ) ) )
1914, 18syl5bb 257 . . . . . . . 8  |-  ( z  =  ( ( invg `  G ) `
 y )  -> 
( ( ( x 
.+  z ) D ( y  .+  z
) )  =  ( x D y )  <-> 
( x D y )  =  ( ( x  .+  ( ( invg `  G
) `  y )
) D ( y 
.+  ( ( invg `  G ) `
 y ) ) ) ) )
2019rspcv 3190 . . . . . . 7  |-  ( ( ( invg `  G ) `  y
)  e.  X  -> 
( A. z  e.  X  ( ( x 
.+  z ) D ( y  .+  z
) )  =  ( x D y )  ->  ( x D y )  =  ( ( x  .+  (
( invg `  G ) `  y
) ) D ( y  .+  ( ( invg `  G
) `  y )
) ) ) )
2113, 20syl 16 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( x  e.  X  /\  y  e.  X
) )  ->  ( A. z  e.  X  ( ( x  .+  z ) D ( y  .+  z ) )  =  ( x D y )  -> 
( x D y )  =  ( ( x  .+  ( ( invg `  G
) `  y )
) D ( y 
.+  ( ( invg `  G ) `
 y ) ) ) ) )
22 eqid 2441 . . . . . . . . . . . 12  |-  ( -g `  G )  =  (
-g `  G )
233, 4, 11, 22grpsubval 15962 . . . . . . . . . . 11  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( x ( -g `  G ) y )  =  ( x  .+  ( ( invg `  G ) `  y
) ) )
2423adantl 466 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( x  e.  X  /\  y  e.  X
) )  ->  (
x ( -g `  G
) y )  =  ( x  .+  (
( invg `  G ) `  y
) ) )
2524eqcomd 2449 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( x  e.  X  /\  y  e.  X
) )  ->  (
x  .+  ( ( invg `  G ) `
 y ) )  =  ( x (
-g `  G )
y ) )
26 eqid 2441 . . . . . . . . . . 11  |-  ( 0g
`  G )  =  ( 0g `  G
)
273, 4, 26, 11grprinv 15966 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  y  e.  X )  ->  ( y  .+  (
( invg `  G ) `  y
) )  =  ( 0g `  G ) )
2827ad2ant2rl 748 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( x  e.  X  /\  y  e.  X
) )  ->  (
y  .+  ( ( invg `  G ) `
 y ) )  =  ( 0g `  G ) )
2925, 28oveq12d 6295 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( x  e.  X  /\  y  e.  X
) )  ->  (
( x  .+  (
( invg `  G ) `  y
) ) D ( y  .+  ( ( invg `  G
) `  y )
) )  =  ( ( x ( -g `  G ) y ) D ( 0g `  G ) ) )
303, 22grpsubcl 15987 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  x  e.  X  /\  y  e.  X )  ->  ( x ( -g `  G ) y )  e.  X )
31303expb 1196 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( x  e.  X  /\  y  e.  X
) )  ->  (
x ( -g `  G
) y )  e.  X )
3231adantlr 714 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( x  e.  X  /\  y  e.  X
) )  ->  (
x ( -g `  G
) y )  e.  X )
33 eqid 2441 . . . . . . . . . 10  |-  ( norm `  G )  =  (
norm `  G )
3433, 3, 26, 5nmval 20976 . . . . . . . . 9  |-  ( ( x ( -g `  G
) y )  e.  X  ->  ( ( norm `  G ) `  ( x ( -g `  G ) y ) )  =  ( ( x ( -g `  G
) y ) D ( 0g `  G
) ) )
3532, 34syl 16 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( x  e.  X  /\  y  e.  X
) )  ->  (
( norm `  G ) `  ( x ( -g `  G ) y ) )  =  ( ( x ( -g `  G
) y ) D ( 0g `  G
) ) )
3629, 35eqtr4d 2485 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( x  e.  X  /\  y  e.  X
) )  ->  (
( x  .+  (
( invg `  G ) `  y
) ) D ( y  .+  ( ( invg `  G
) `  y )
) )  =  ( ( norm `  G
) `  ( x
( -g `  G ) y ) ) )
3736eqeq2d 2455 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( x  e.  X  /\  y  e.  X
) )  ->  (
( x D y )  =  ( ( x  .+  ( ( invg `  G
) `  y )
) D ( y 
.+  ( ( invg `  G ) `
 y ) ) )  <->  ( x D y )  =  ( ( norm `  G
) `  ( x
( -g `  G ) y ) ) ) )
3821, 37sylibd 214 . . . . 5  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( x  e.  X  /\  y  e.  X
) )  ->  ( A. z  e.  X  ( ( x  .+  z ) D ( y  .+  z ) )  =  ( x D y )  -> 
( x D y )  =  ( (
norm `  G ) `  ( x ( -g `  G ) y ) ) ) )
3938ralimdvva 2852 . . . 4  |-  ( ( G  e.  Grp  /\  G  e.  MetSp )  -> 
( A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( x 
.+  z ) D ( y  .+  z
) )  =  ( x D y )  ->  A. x  e.  X  A. y  e.  X  ( x D y )  =  ( (
norm `  G ) `  ( x ( -g `  G ) y ) ) ) )
40393impia 1192 . . 3  |-  ( ( G  e.  Grp  /\  G  e.  MetSp  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( x  .+  z
) D ( y 
.+  z ) )  =  ( x D y ) )  ->  A. x  e.  X  A. y  e.  X  ( x D y )  =  ( (
norm `  G ) `  ( x ( -g `  G ) y ) ) )
4133, 22, 5, 3isngp3 20984 . . 3  |-  ( G  e. NrmGrp 
<->  ( G  e.  Grp  /\  G  e.  MetSp  /\  A. x  e.  X  A. y  e.  X  (
x D y )  =  ( ( norm `  G ) `  (
x ( -g `  G
) y ) ) ) )
429, 10, 40, 41syl3anbrc 1179 . 2  |-  ( ( G  e.  Grp  /\  G  e.  MetSp  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( x  .+  z
) D ( y 
.+  z ) )  =  ( x D y ) )  ->  G  e. NrmGrp )
438, 42impbii 188 1  |-  ( G  e. NrmGrp 
<->  ( G  e.  Grp  /\  G  e.  MetSp  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( x  .+  z
) D ( y 
.+  z ) )  =  ( x D y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802   A.wral 2791   ` cfv 5574  (class class class)co 6277   Basecbs 14504   +g cplusg 14569   distcds 14578   0gc0g 14709   Grpcgrp 15922   invgcminusg 15923   -gcsg 15924   MetSpcmt 20687   normcnm 20963  NrmGrpcngp 20964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6682  df-1st 6781  df-2nd 6782  df-recs 7040  df-rdg 7074  df-er 7309  df-map 7420  df-en 7515  df-dom 7516  df-sdom 7517  df-sup 7899  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-div 10208  df-nn 10538  df-2 10595  df-n0 10797  df-z 10866  df-uz 11086  df-q 11187  df-rp 11225  df-xneg 11322  df-xadd 11323  df-xmul 11324  df-0g 14711  df-topgen 14713  df-mgm 15741  df-sgrp 15780  df-mnd 15790  df-grp 15926  df-minusg 15927  df-sbg 15928  df-psmet 18279  df-xmet 18280  df-met 18281  df-bl 18282  df-mopn 18283  df-top 19266  df-bases 19268  df-topon 19269  df-topsp 19270  df-xms 20689  df-ms 20690  df-nm 20969  df-ngp 20970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator