MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isngp2 Structured version   Visualization version   Unicode version

Theorem isngp2 21689
Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
isngp.n  |-  N  =  ( norm `  G
)
isngp.z  |-  .-  =  ( -g `  G )
isngp.d  |-  D  =  ( dist `  G
)
isngp2.x  |-  X  =  ( Base `  G
)
isngp2.e  |-  E  =  ( D  |`  ( X  X.  X ) )
Assertion
Ref Expression
isngp2  |-  ( G  e. NrmGrp 
<->  ( G  e.  Grp  /\  G  e.  MetSp  /\  ( N  o.  .-  )  =  E ) )

Proof of Theorem isngp2
StepHypRef Expression
1 isngp.n . . 3  |-  N  =  ( norm `  G
)
2 isngp.z . . 3  |-  .-  =  ( -g `  G )
3 isngp.d . . 3  |-  D  =  ( dist `  G
)
41, 2, 3isngp 21688 . 2  |-  ( G  e. NrmGrp 
<->  ( G  e.  Grp  /\  G  e.  MetSp  /\  ( N  o.  .-  )  C_  D ) )
5 isngp2.e . . . . . . 7  |-  E  =  ( D  |`  ( X  X.  X ) )
6 resss 5134 . . . . . . 7  |-  ( D  |`  ( X  X.  X
) )  C_  D
75, 6eqsstri 3448 . . . . . 6  |-  E  C_  D
8 sseq1 3439 . . . . . 6  |-  ( ( N  o.  .-  )  =  E  ->  ( ( N  o.  .-  )  C_  D  <->  E  C_  D ) )
97, 8mpbiri 241 . . . . 5  |-  ( ( N  o.  .-  )  =  E  ->  ( N  o.  .-  )  C_  D )
10 isngp2.x . . . . . . . . . . . . 13  |-  X  =  ( Base `  G
)
113reseq1i 5107 . . . . . . . . . . . . . 14  |-  ( D  |`  ( X  X.  X
) )  =  ( ( dist `  G
)  |`  ( X  X.  X ) )
125, 11eqtri 2493 . . . . . . . . . . . . 13  |-  E  =  ( ( dist `  G
)  |`  ( X  X.  X ) )
1310, 12msmet 21550 . . . . . . . . . . . 12  |-  ( G  e.  MetSp  ->  E  e.  ( Met `  X ) )
141, 10, 3, 5nmf2 21685 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  E  e.  ( Met `  X ) )  ->  N : X --> RR )
1513, 14sylan2 482 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  G  e.  MetSp )  ->  N : X --> RR )
1615adantr 472 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  N : X --> RR )
1710, 2grpsubf 16811 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  .-  :
( X  X.  X
) --> X )
1817ad2antrr 740 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  .-  :
( X  X.  X
) --> X )
19 fco 5751 . . . . . . . . . 10  |-  ( ( N : X --> RR  /\  .-  : ( X  X.  X ) --> X )  ->  ( N  o.  .-  ) : ( X  X.  X ) --> RR )
2016, 18, 19syl2anc 673 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( N  o.  .-  ) : ( X  X.  X
) --> RR )
21 fdm 5745 . . . . . . . . 9  |-  ( ( N  o.  .-  ) : ( X  X.  X ) --> RR  ->  dom  ( N  o.  .-  )  =  ( X  X.  X ) )
2220, 21syl 17 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  dom  ( N  o.  .-  )  =  ( X  X.  X ) )
2322reseq2d 5111 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( E  |`  dom  ( N  o.  .-  ) )  =  ( E  |`  ( X  X.  X
) ) )
2410, 12msf 21551 . . . . . . . . . 10  |-  ( G  e.  MetSp  ->  E :
( X  X.  X
) --> RR )
2524ad2antlr 741 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  E : ( X  X.  X ) --> RR )
26 ffun 5742 . . . . . . . . 9  |-  ( E : ( X  X.  X ) --> RR  ->  Fun 
E )
2725, 26syl 17 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  Fun  E )
28 simpr 468 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( N  o.  .-  )  C_  D )
29 ssv 3438 . . . . . . . . . . . 12  |-  RR  C_  _V
30 fss 5749 . . . . . . . . . . . 12  |-  ( ( ( N  o.  .-  ) : ( X  X.  X ) --> RR  /\  RR  C_  _V )  -> 
( N  o.  .-  ) : ( X  X.  X ) --> _V )
3120, 29, 30sylancl 675 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( N  o.  .-  ) : ( X  X.  X
) --> _V )
32 fssxp 5753 . . . . . . . . . . 11  |-  ( ( N  o.  .-  ) : ( X  X.  X ) --> _V  ->  ( N  o.  .-  )  C_  ( ( X  X.  X )  X.  _V ) )
3331, 32syl 17 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( N  o.  .-  )  C_  ( ( X  X.  X )  X.  _V ) )
3428, 33ssind 3647 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( N  o.  .-  )  C_  ( D  i^i  (
( X  X.  X
)  X.  _V )
) )
35 df-res 4851 . . . . . . . . . 10  |-  ( D  |`  ( X  X.  X
) )  =  ( D  i^i  ( ( X  X.  X )  X.  _V ) )
365, 35eqtri 2493 . . . . . . . . 9  |-  E  =  ( D  i^i  (
( X  X.  X
)  X.  _V )
)
3734, 36syl6sseqr 3465 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( N  o.  .-  )  C_  E )
38 funssres 5629 . . . . . . . 8  |-  ( ( Fun  E  /\  ( N  o.  .-  )  C_  E )  ->  ( E  |`  dom  ( N  o.  .-  ) )  =  ( N  o.  .-  ) )
3927, 37, 38syl2anc 673 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( E  |`  dom  ( N  o.  .-  ) )  =  ( N  o.  .-  ) )
40 ffn 5739 . . . . . . . 8  |-  ( E : ( X  X.  X ) --> RR  ->  E  Fn  ( X  X.  X ) )
41 fnresdm 5695 . . . . . . . 8  |-  ( E  Fn  ( X  X.  X )  ->  ( E  |`  ( X  X.  X ) )  =  E )
4225, 40, 413syl 18 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( E  |`  ( X  X.  X ) )  =  E )
4323, 39, 423eqtr3d 2513 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( N  o.  .-  )  =  E )
4443ex 441 . . . . 5  |-  ( ( G  e.  Grp  /\  G  e.  MetSp )  -> 
( ( N  o.  .-  )  C_  D  ->  ( N  o.  .-  )  =  E ) )
459, 44impbid2 209 . . . 4  |-  ( ( G  e.  Grp  /\  G  e.  MetSp )  -> 
( ( N  o.  .-  )  =  E  <->  ( N  o.  .-  )  C_  D
) )
4645pm5.32i 649 . . 3  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  =  E )  <->  ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D ) )
47 df-3an 1009 . . 3  |-  ( ( G  e.  Grp  /\  G  e.  MetSp  /\  ( N  o.  .-  )  =  E )  <->  ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  =  E ) )
48 df-3an 1009 . . 3  |-  ( ( G  e.  Grp  /\  G  e.  MetSp  /\  ( N  o.  .-  )  C_  D )  <->  ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D ) )
4946, 47, 483bitr4i 285 . 2  |-  ( ( G  e.  Grp  /\  G  e.  MetSp  /\  ( N  o.  .-  )  =  E )  <->  ( G  e.  Grp  /\  G  e. 
MetSp  /\  ( N  o.  .-  )  C_  D )
)
504, 49bitr4i 260 1  |-  ( G  e. NrmGrp 
<->  ( G  e.  Grp  /\  G  e.  MetSp  /\  ( N  o.  .-  )  =  E ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904   _Vcvv 3031    i^i cin 3389    C_ wss 3390    X. cxp 4837   dom cdm 4839    |` cres 4841    o. ccom 4843   Fun wfun 5583    Fn wfn 5584   -->wf 5585   ` cfv 5589   RRcr 9556   Basecbs 15199   distcds 15277   Grpcgrp 16747   -gcsg 16749   Metcme 19033   MetSpcmt 21411   normcnm 21669  NrmGrpcngp 21670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-sup 7974  df-inf 7975  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-n0 10894  df-z 10962  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-0g 15418  df-topgen 15420  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-grp 16751  df-minusg 16752  df-sbg 16753  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-xms 21413  df-ms 21414  df-nm 21675  df-ngp 21676
This theorem is referenced by:  isngp3  21690  ngpds  21695  ngppropd  21723
  Copyright terms: Public domain W3C validator