MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isngp Structured version   Unicode version

Theorem isngp 20186
Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
isngp.n  |-  N  =  ( norm `  G
)
isngp.z  |-  .-  =  ( -g `  G )
isngp.d  |-  D  =  ( dist `  G
)
Assertion
Ref Expression
isngp  |-  ( G  e. NrmGrp 
<->  ( G  e.  Grp  /\  G  e.  MetSp  /\  ( N  o.  .-  )  C_  D ) )

Proof of Theorem isngp
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 elin 3537 . . 3  |-  ( G  e.  ( Grp  i^i  MetSp
)  <->  ( G  e. 
Grp  /\  G  e.  MetSp
) )
21anbi1i 695 . 2  |-  ( ( G  e.  ( Grp 
i^i  MetSp )  /\  ( N  o.  .-  )  C_  D )  <->  ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D ) )
3 fveq2 5689 . . . . . 6  |-  ( g  =  G  ->  ( norm `  g )  =  ( norm `  G
) )
4 isngp.n . . . . . 6  |-  N  =  ( norm `  G
)
53, 4syl6eqr 2491 . . . . 5  |-  ( g  =  G  ->  ( norm `  g )  =  N )
6 fveq2 5689 . . . . . 6  |-  ( g  =  G  ->  ( -g `  g )  =  ( -g `  G
) )
7 isngp.z . . . . . 6  |-  .-  =  ( -g `  G )
86, 7syl6eqr 2491 . . . . 5  |-  ( g  =  G  ->  ( -g `  g )  = 
.-  )
95, 8coeq12d 5002 . . . 4  |-  ( g  =  G  ->  (
( norm `  g )  o.  ( -g `  g
) )  =  ( N  o.  .-  )
)
10 fveq2 5689 . . . . 5  |-  ( g  =  G  ->  ( dist `  g )  =  ( dist `  G
) )
11 isngp.d . . . . 5  |-  D  =  ( dist `  G
)
1210, 11syl6eqr 2491 . . . 4  |-  ( g  =  G  ->  ( dist `  g )  =  D )
139, 12sseq12d 3383 . . 3  |-  ( g  =  G  ->  (
( ( norm `  g
)  o.  ( -g `  g ) )  C_  ( dist `  g )  <->  ( N  o.  .-  )  C_  D ) )
14 df-ngp 20174 . . 3  |- NrmGrp  =  {
g  e.  ( Grp 
i^i  MetSp )  |  ( ( norm `  g
)  o.  ( -g `  g ) )  C_  ( dist `  g ) }
1513, 14elrab2 3117 . 2  |-  ( G  e. NrmGrp 
<->  ( G  e.  ( Grp  i^i  MetSp )  /\  ( N  o.  .-  )  C_  D ) )
16 df-3an 967 . 2  |-  ( ( G  e.  Grp  /\  G  e.  MetSp  /\  ( N  o.  .-  )  C_  D )  <->  ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D ) )
172, 15, 163bitr4i 277 1  |-  ( G  e. NrmGrp 
<->  ( G  e.  Grp  /\  G  e.  MetSp  /\  ( N  o.  .-  )  C_  D ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    i^i cin 3325    C_ wss 3326    o. ccom 4842   ` cfv 5416   distcds 14245   Grpcgrp 15408   -gcsg 15411   MetSpcmt 19891   normcnm 20167  NrmGrpcngp 20168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-rex 2719  df-rab 2722  df-v 2972  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-nul 3636  df-if 3790  df-sn 3876  df-pr 3878  df-op 3882  df-uni 4090  df-br 4291  df-opab 4349  df-co 4847  df-iota 5379  df-fv 5424  df-ngp 20174
This theorem is referenced by:  isngp2  20187  ngpgrp  20189  ngpms  20190  tngngp2  20236  cnngp  20357  zhmnrg  26394
  Copyright terms: Public domain W3C validator