MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isngp Structured version   Unicode version

Theorem isngp 21241
Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
isngp.n  |-  N  =  ( norm `  G
)
isngp.z  |-  .-  =  ( -g `  G )
isngp.d  |-  D  =  ( dist `  G
)
Assertion
Ref Expression
isngp  |-  ( G  e. NrmGrp 
<->  ( G  e.  Grp  /\  G  e.  MetSp  /\  ( N  o.  .-  )  C_  D ) )

Proof of Theorem isngp
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 elin 3683 . . 3  |-  ( G  e.  ( Grp  i^i  MetSp
)  <->  ( G  e. 
Grp  /\  G  e.  MetSp
) )
21anbi1i 695 . 2  |-  ( ( G  e.  ( Grp 
i^i  MetSp )  /\  ( N  o.  .-  )  C_  D )  <->  ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D ) )
3 fveq2 5872 . . . . . 6  |-  ( g  =  G  ->  ( norm `  g )  =  ( norm `  G
) )
4 isngp.n . . . . . 6  |-  N  =  ( norm `  G
)
53, 4syl6eqr 2516 . . . . 5  |-  ( g  =  G  ->  ( norm `  g )  =  N )
6 fveq2 5872 . . . . . 6  |-  ( g  =  G  ->  ( -g `  g )  =  ( -g `  G
) )
7 isngp.z . . . . . 6  |-  .-  =  ( -g `  G )
86, 7syl6eqr 2516 . . . . 5  |-  ( g  =  G  ->  ( -g `  g )  = 
.-  )
95, 8coeq12d 5177 . . . 4  |-  ( g  =  G  ->  (
( norm `  g )  o.  ( -g `  g
) )  =  ( N  o.  .-  )
)
10 fveq2 5872 . . . . 5  |-  ( g  =  G  ->  ( dist `  g )  =  ( dist `  G
) )
11 isngp.d . . . . 5  |-  D  =  ( dist `  G
)
1210, 11syl6eqr 2516 . . . 4  |-  ( g  =  G  ->  ( dist `  g )  =  D )
139, 12sseq12d 3528 . . 3  |-  ( g  =  G  ->  (
( ( norm `  g
)  o.  ( -g `  g ) )  C_  ( dist `  g )  <->  ( N  o.  .-  )  C_  D ) )
14 df-ngp 21229 . . 3  |- NrmGrp  =  {
g  e.  ( Grp 
i^i  MetSp )  |  ( ( norm `  g
)  o.  ( -g `  g ) )  C_  ( dist `  g ) }
1513, 14elrab2 3259 . 2  |-  ( G  e. NrmGrp 
<->  ( G  e.  ( Grp  i^i  MetSp )  /\  ( N  o.  .-  )  C_  D ) )
16 df-3an 975 . 2  |-  ( ( G  e.  Grp  /\  G  e.  MetSp  /\  ( N  o.  .-  )  C_  D )  <->  ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D ) )
172, 15, 163bitr4i 277 1  |-  ( G  e. NrmGrp 
<->  ( G  e.  Grp  /\  G  e.  MetSp  /\  ( N  o.  .-  )  C_  D ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    i^i cin 3470    C_ wss 3471    o. ccom 5012   ` cfv 5594   distcds 14720   Grpcgrp 16179   -gcsg 16181   MetSpcmt 20946   normcnm 21222  NrmGrpcngp 21223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-co 5017  df-iota 5557  df-fv 5602  df-ngp 21229
This theorem is referenced by:  isngp2  21242  ngpgrp  21244  ngpms  21245  tngngp2  21291  cnngp  21412  zhmnrg  28101
  Copyright terms: Public domain W3C validator