MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnei Structured version   Unicode version

Theorem isnei 19367
Description: The predicate " N is a neighborhood of  S." (Contributed by FL, 25-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
neifval.1  |-  X  = 
U. J
Assertion
Ref Expression
isnei  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( N  e.  ( ( nei `  J
) `  S )  <->  ( N  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) ) )
Distinct variable groups:    g, J    g, N    S, g    g, X

Proof of Theorem isnei
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 neifval.1 . . . 4  |-  X  = 
U. J
21neival 19366 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( nei `  J
) `  S )  =  { v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) } )
32eleq2d 2537 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( N  e.  ( ( nei `  J
) `  S )  <->  N  e.  { v  e. 
~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) } ) )
4 sseq2 3526 . . . . . . 7  |-  ( v  =  N  ->  (
g  C_  v  <->  g  C_  N ) )
54anbi2d 703 . . . . . 6  |-  ( v  =  N  ->  (
( S  C_  g  /\  g  C_  v )  <-> 
( S  C_  g  /\  g  C_  N ) ) )
65rexbidv 2973 . . . . 5  |-  ( v  =  N  ->  ( E. g  e.  J  ( S  C_  g  /\  g  C_  v )  <->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) )
76elrab 3261 . . . 4  |-  ( N  e.  { v  e. 
~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) }  <->  ( N  e.  ~P X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) )
81topopn 19179 . . . . . 6  |-  ( J  e.  Top  ->  X  e.  J )
9 elpw2g 4610 . . . . . 6  |-  ( X  e.  J  ->  ( N  e.  ~P X  <->  N 
C_  X ) )
108, 9syl 16 . . . . 5  |-  ( J  e.  Top  ->  ( N  e.  ~P X  <->  N 
C_  X ) )
1110anbi1d 704 . . . 4  |-  ( J  e.  Top  ->  (
( N  e.  ~P X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N
) )  <->  ( N  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) ) )
127, 11syl5bb 257 . . 3  |-  ( J  e.  Top  ->  ( N  e.  { v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) }  <->  ( N  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) ) )
1312adantr 465 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( N  e.  {
v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) }  <-> 
( N  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) ) )
143, 13bitrd 253 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( N  e.  ( ( nei `  J
) `  S )  <->  ( N  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   E.wrex 2815   {crab 2818    C_ wss 3476   ~Pcpw 4010   U.cuni 4245   ` cfv 5586   Topctop 19158   neicnei 19361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-top 19163  df-nei 19362
This theorem is referenced by:  neiint  19368  isneip  19369  neii1  19370  neii2  19372  neiss  19373  neips  19377  opnneissb  19378  opnssneib  19379  ssnei2  19380  innei  19389  neitr  19444  neitx  19840  neifg  29790  islptre  31161
  Copyright terms: Public domain W3C validator