MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnat2 Structured version   Unicode version

Theorem isnat2 15175
Description: Property of being a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
natfval.1  |-  N  =  ( C Nat  D )
natfval.b  |-  B  =  ( Base `  C
)
natfval.h  |-  H  =  ( Hom  `  C
)
natfval.j  |-  J  =  ( Hom  `  D
)
natfval.o  |-  .x.  =  (comp `  D )
isnat2.f  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
isnat2.g  |-  ( ph  ->  G  e.  ( C 
Func  D ) )
Assertion
Ref Expression
isnat2  |-  ( ph  ->  ( A  e.  ( F N G )  <-> 
( A  e.  X_ x  e.  B  (
( ( 1st `  F
) `  x ) J ( ( 1st `  G ) `  x
) )  /\  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( A `  y
) ( <. (
( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  y
) >.  .x.  ( ( 1st `  G ) `  y ) ) ( ( x ( 2nd `  F ) y ) `
 h ) )  =  ( ( ( x ( 2nd `  G
) y ) `  h ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >.  .x.  ( ( 1st `  G ) `  y ) ) ( A `  x ) ) ) ) )
Distinct variable groups:    x, h, y, A    x, B, y    C, h, x, y    h, F, x, y    h, G, x, y    h, H    ph, h, x, y    D, h, x, y
Allowed substitution hints:    B( h)    .x. ( x, y, h)    H( x, y)    J( x, y, h)    N( x, y, h)

Proof of Theorem isnat2
StepHypRef Expression
1 relfunc 15089 . . . . 5  |-  Rel  ( C  Func  D )
2 isnat2.f . . . . 5  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
3 1st2nd 6830 . . . . 5  |-  ( ( Rel  ( C  Func  D )  /\  F  e.  ( C  Func  D
) )  ->  F  =  <. ( 1st `  F
) ,  ( 2nd `  F ) >. )
41, 2, 3sylancr 663 . . . 4  |-  ( ph  ->  F  =  <. ( 1st `  F ) ,  ( 2nd `  F
) >. )
5 isnat2.g . . . . 5  |-  ( ph  ->  G  e.  ( C 
Func  D ) )
6 1st2nd 6830 . . . . 5  |-  ( ( Rel  ( C  Func  D )  /\  G  e.  ( C  Func  D
) )  ->  G  =  <. ( 1st `  G
) ,  ( 2nd `  G ) >. )
71, 5, 6sylancr 663 . . . 4  |-  ( ph  ->  G  =  <. ( 1st `  G ) ,  ( 2nd `  G
) >. )
84, 7oveq12d 6302 . . 3  |-  ( ph  ->  ( F N G )  =  ( <.
( 1st `  F
) ,  ( 2nd `  F ) >. N <. ( 1st `  G ) ,  ( 2nd `  G
) >. ) )
98eleq2d 2537 . 2  |-  ( ph  ->  ( A  e.  ( F N G )  <-> 
A  e.  ( <.
( 1st `  F
) ,  ( 2nd `  F ) >. N <. ( 1st `  G ) ,  ( 2nd `  G
) >. ) ) )
10 natfval.1 . . 3  |-  N  =  ( C Nat  D )
11 natfval.b . . 3  |-  B  =  ( Base `  C
)
12 natfval.h . . 3  |-  H  =  ( Hom  `  C
)
13 natfval.j . . 3  |-  J  =  ( Hom  `  D
)
14 natfval.o . . 3  |-  .x.  =  (comp `  D )
15 1st2ndbr 6833 . . . 4  |-  ( ( Rel  ( C  Func  D )  /\  F  e.  ( C  Func  D
) )  ->  ( 1st `  F ) ( C  Func  D )
( 2nd `  F
) )
161, 2, 15sylancr 663 . . 3  |-  ( ph  ->  ( 1st `  F
) ( C  Func  D ) ( 2nd `  F
) )
17 1st2ndbr 6833 . . . 4  |-  ( ( Rel  ( C  Func  D )  /\  G  e.  ( C  Func  D
) )  ->  ( 1st `  G ) ( C  Func  D )
( 2nd `  G
) )
181, 5, 17sylancr 663 . . 3  |-  ( ph  ->  ( 1st `  G
) ( C  Func  D ) ( 2nd `  G
) )
1910, 11, 12, 13, 14, 16, 18isnat 15174 . 2  |-  ( ph  ->  ( A  e.  (
<. ( 1st `  F
) ,  ( 2nd `  F ) >. N <. ( 1st `  G ) ,  ( 2nd `  G
) >. )  <->  ( A  e.  X_ x  e.  B  ( ( ( 1st `  F ) `  x
) J ( ( 1st `  G ) `
 x ) )  /\  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( A `
 y ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  y
) >.  .x.  ( ( 1st `  G ) `  y ) ) ( ( x ( 2nd `  F ) y ) `
 h ) )  =  ( ( ( x ( 2nd `  G
) y ) `  h ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >.  .x.  ( ( 1st `  G ) `  y ) ) ( A `  x ) ) ) ) )
209, 19bitrd 253 1  |-  ( ph  ->  ( A  e.  ( F N G )  <-> 
( A  e.  X_ x  e.  B  (
( ( 1st `  F
) `  x ) J ( ( 1st `  G ) `  x
) )  /\  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( A `  y
) ( <. (
( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  y
) >.  .x.  ( ( 1st `  G ) `  y ) ) ( ( x ( 2nd `  F ) y ) `
 h ) )  =  ( ( ( x ( 2nd `  G
) y ) `  h ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >.  .x.  ( ( 1st `  G ) `  y ) ) ( A `  x ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   <.cop 4033   class class class wbr 4447   Rel wrel 5004   ` cfv 5588  (class class class)co 6284   1stc1st 6782   2ndc2nd 6783   X_cixp 7469   Basecbs 14490   Hom chom 14566  compcco 14567    Func cfunc 15081   Nat cnat 15168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-1st 6784  df-2nd 6785  df-ixp 7470  df-func 15085  df-nat 15170
This theorem is referenced by:  fuccocl  15191  fucidcl  15192  invfuc  15201  curf2cl  15358  yonedalem4c  15404  yonedalem3  15407
  Copyright terms: Public domain W3C validator