Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnacs2 Structured version   Unicode version

Theorem isnacs2 30572
Description: Express Noetherian-type closure system with fewer quantifiers. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypothesis
Ref Expression
isnacs.f  |-  F  =  (mrCls `  C )
Assertion
Ref Expression
isnacs2  |-  ( C  e.  (NoeACS `  X
)  <->  ( C  e.  (ACS `  X )  /\  ( F " ( ~P X  i^i  Fin )
)  =  C ) )

Proof of Theorem isnacs2
Dummy variables  g 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnacs.f . . 3  |-  F  =  (mrCls `  C )
21isnacs 30570 . 2  |-  ( C  e.  (NoeACS `  X
)  <->  ( C  e.  (ACS `  X )  /\  A. s  e.  C  E. g  e.  ( ~P X  i^i  Fin )
s  =  ( F `
 g ) ) )
3 acsmre 14923 . . . . . . . . 9  |-  ( C  e.  (ACS `  X
)  ->  C  e.  (Moore `  X ) )
41mrcf 14880 . . . . . . . . 9  |-  ( C  e.  (Moore `  X
)  ->  F : ~P X --> C )
5 ffn 5737 . . . . . . . . 9  |-  ( F : ~P X --> C  ->  F  Fn  ~P X
)
63, 4, 53syl 20 . . . . . . . 8  |-  ( C  e.  (ACS `  X
)  ->  F  Fn  ~P X )
7 inss1 3723 . . . . . . . 8  |-  ( ~P X  i^i  Fin )  C_ 
~P X
8 fvelimab 5930 . . . . . . . 8  |-  ( ( F  Fn  ~P X  /\  ( ~P X  i^i  Fin )  C_  ~P X
)  ->  ( s  e.  ( F " ( ~P X  i^i  Fin )
)  <->  E. g  e.  ( ~P X  i^i  Fin ) ( F `  g )  =  s ) )
96, 7, 8sylancl 662 . . . . . . 7  |-  ( C  e.  (ACS `  X
)  ->  ( s  e.  ( F " ( ~P X  i^i  Fin )
)  <->  E. g  e.  ( ~P X  i^i  Fin ) ( F `  g )  =  s ) )
10 eqcom 2476 . . . . . . . 8  |-  ( s  =  ( F `  g )  <->  ( F `  g )  =  s )
1110rexbii 2969 . . . . . . 7  |-  ( E. g  e.  ( ~P X  i^i  Fin )
s  =  ( F `
 g )  <->  E. g  e.  ( ~P X  i^i  Fin ) ( F `  g )  =  s )
129, 11syl6rbbr 264 . . . . . 6  |-  ( C  e.  (ACS `  X
)  ->  ( E. g  e.  ( ~P X  i^i  Fin ) s  =  ( F `  g )  <->  s  e.  ( F " ( ~P X  i^i  Fin )
) ) )
1312ralbidv 2906 . . . . 5  |-  ( C  e.  (ACS `  X
)  ->  ( A. s  e.  C  E. g  e.  ( ~P X  i^i  Fin ) s  =  ( F `  g )  <->  A. s  e.  C  s  e.  ( F " ( ~P X  i^i  Fin )
) ) )
14 dfss3 3499 . . . . 5  |-  ( C 
C_  ( F "
( ~P X  i^i  Fin ) )  <->  A. s  e.  C  s  e.  ( F " ( ~P X  i^i  Fin )
) )
1513, 14syl6bbr 263 . . . 4  |-  ( C  e.  (ACS `  X
)  ->  ( A. s  e.  C  E. g  e.  ( ~P X  i^i  Fin ) s  =  ( F `  g )  <->  C  C_  ( F " ( ~P X  i^i  Fin ) ) ) )
16 imassrn 5354 . . . . . . 7  |-  ( F
" ( ~P X  i^i  Fin ) )  C_  ran  F
17 frn 5743 . . . . . . . 8  |-  ( F : ~P X --> C  ->  ran  F  C_  C )
183, 4, 173syl 20 . . . . . . 7  |-  ( C  e.  (ACS `  X
)  ->  ran  F  C_  C )
1916, 18syl5ss 3520 . . . . . 6  |-  ( C  e.  (ACS `  X
)  ->  ( F " ( ~P X  i^i  Fin ) )  C_  C
)
2019biantrurd 508 . . . . 5  |-  ( C  e.  (ACS `  X
)  ->  ( C  C_  ( F " ( ~P X  i^i  Fin )
)  <->  ( ( F
" ( ~P X  i^i  Fin ) )  C_  C  /\  C  C_  ( F " ( ~P X  i^i  Fin ) ) ) ) )
21 eqss 3524 . . . . 5  |-  ( ( F " ( ~P X  i^i  Fin )
)  =  C  <->  ( ( F " ( ~P X  i^i  Fin ) )  C_  C  /\  C  C_  ( F " ( ~P X  i^i  Fin ) ) ) )
2220, 21syl6bbr 263 . . . 4  |-  ( C  e.  (ACS `  X
)  ->  ( C  C_  ( F " ( ~P X  i^i  Fin )
)  <->  ( F "
( ~P X  i^i  Fin ) )  =  C ) )
2315, 22bitrd 253 . . 3  |-  ( C  e.  (ACS `  X
)  ->  ( A. s  e.  C  E. g  e.  ( ~P X  i^i  Fin ) s  =  ( F `  g )  <->  ( F " ( ~P X  i^i  Fin ) )  =  C ) )
2423pm5.32i 637 . 2  |-  ( ( C  e.  (ACS `  X )  /\  A. s  e.  C  E. g  e.  ( ~P X  i^i  Fin ) s  =  ( F `  g ) )  <->  ( C  e.  (ACS `  X )  /\  ( F " ( ~P X  i^i  Fin )
)  =  C ) )
252, 24bitri 249 1  |-  ( C  e.  (NoeACS `  X
)  <->  ( C  e.  (ACS `  X )  /\  ( F " ( ~P X  i^i  Fin )
)  =  C ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2817   E.wrex 2818    i^i cin 3480    C_ wss 3481   ~Pcpw 4016   ran crn 5006   "cima 5008    Fn wfn 5589   -->wf 5590   ` cfv 5594   Fincfn 7528  Moorecmre 14853  mrClscmrc 14854  ACScacs 14856  NoeACScnacs 30568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-int 4289  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-fv 5602  df-mre 14857  df-mrc 14858  df-acs 14860  df-nacs 30569
This theorem is referenced by:  nacsacs  30575
  Copyright terms: Public domain W3C validator