Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnacs Structured version   Unicode version

Theorem isnacs 29045
Description: Expand definition of Noetherian-type closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypothesis
Ref Expression
isnacs.f  |-  F  =  (mrCls `  C )
Assertion
Ref Expression
isnacs  |-  ( C  e.  (NoeACS `  X
)  <->  ( C  e.  (ACS `  X )  /\  A. s  e.  C  E. g  e.  ( ~P X  i^i  Fin )
s  =  ( F `
 g ) ) )
Distinct variable groups:    C, g,
s    g, F, s    g, X, s

Proof of Theorem isnacs
Dummy variables  c  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 5722 . 2  |-  ( C  e.  (NoeACS `  X
)  ->  X  e.  _V )
2 elfvex 5722 . . 3  |-  ( C  e.  (ACS `  X
)  ->  X  e.  _V )
32adantr 465 . 2  |-  ( ( C  e.  (ACS `  X )  /\  A. s  e.  C  E. g  e.  ( ~P X  i^i  Fin ) s  =  ( F `  g ) )  ->  X  e.  _V )
4 fveq2 5696 . . . . . 6  |-  ( x  =  X  ->  (ACS `  x )  =  (ACS
`  X ) )
5 pweq 3868 . . . . . . . . 9  |-  ( x  =  X  ->  ~P x  =  ~P X
)
65ineq1d 3556 . . . . . . . 8  |-  ( x  =  X  ->  ( ~P x  i^i  Fin )  =  ( ~P X  i^i  Fin ) )
76rexeqdv 2929 . . . . . . 7  |-  ( x  =  X  ->  ( E. g  e.  ( ~P x  i^i  Fin )
s  =  ( (mrCls `  c ) `  g
)  <->  E. g  e.  ( ~P X  i^i  Fin ) s  =  ( (mrCls `  c ) `  g ) ) )
87ralbidv 2740 . . . . . 6  |-  ( x  =  X  ->  ( A. s  e.  c  E. g  e.  ( ~P x  i^i  Fin )
s  =  ( (mrCls `  c ) `  g
)  <->  A. s  e.  c  E. g  e.  ( ~P X  i^i  Fin ) s  =  ( (mrCls `  c ) `  g ) ) )
94, 8rabeqbidv 2972 . . . . 5  |-  ( x  =  X  ->  { c  e.  (ACS `  x
)  |  A. s  e.  c  E. g  e.  ( ~P x  i^i 
Fin ) s  =  ( (mrCls `  c
) `  g ) }  =  { c  e.  (ACS `  X )  |  A. s  e.  c  E. g  e.  ( ~P X  i^i  Fin ) s  =  ( (mrCls `  c ) `  g ) } )
10 df-nacs 29044 . . . . 5  |- NoeACS  =  ( x  e.  _V  |->  { c  e.  (ACS `  x )  |  A. s  e.  c  E. g  e.  ( ~P x  i^i  Fin ) s  =  ( (mrCls `  c ) `  g
) } )
11 fvex 5706 . . . . . 6  |-  (ACS `  X )  e.  _V
1211rabex 4448 . . . . 5  |-  { c  e.  (ACS `  X
)  |  A. s  e.  c  E. g  e.  ( ~P X  i^i  Fin ) s  =  ( (mrCls `  c ) `  g ) }  e.  _V
139, 10, 12fvmpt 5779 . . . 4  |-  ( X  e.  _V  ->  (NoeACS `  X )  =  {
c  e.  (ACS `  X )  |  A. s  e.  c  E. g  e.  ( ~P X  i^i  Fin ) s  =  ( (mrCls `  c ) `  g
) } )
1413eleq2d 2510 . . 3  |-  ( X  e.  _V  ->  ( C  e.  (NoeACS `  X
)  <->  C  e.  { c  e.  (ACS `  X
)  |  A. s  e.  c  E. g  e.  ( ~P X  i^i  Fin ) s  =  ( (mrCls `  c ) `  g ) } ) )
15 fveq2 5696 . . . . . . . . 9  |-  ( c  =  C  ->  (mrCls `  c )  =  (mrCls `  C ) )
16 isnacs.f . . . . . . . . 9  |-  F  =  (mrCls `  C )
1715, 16syl6eqr 2493 . . . . . . . 8  |-  ( c  =  C  ->  (mrCls `  c )  =  F )
1817fveq1d 5698 . . . . . . 7  |-  ( c  =  C  ->  (
(mrCls `  c ) `  g )  =  ( F `  g ) )
1918eqeq2d 2454 . . . . . 6  |-  ( c  =  C  ->  (
s  =  ( (mrCls `  c ) `  g
)  <->  s  =  ( F `  g ) ) )
2019rexbidv 2741 . . . . 5  |-  ( c  =  C  ->  ( E. g  e.  ( ~P X  i^i  Fin )
s  =  ( (mrCls `  c ) `  g
)  <->  E. g  e.  ( ~P X  i^i  Fin ) s  =  ( F `  g ) ) )
2120raleqbi1dv 2930 . . . 4  |-  ( c  =  C  ->  ( A. s  e.  c  E. g  e.  ( ~P X  i^i  Fin )
s  =  ( (mrCls `  c ) `  g
)  <->  A. s  e.  C  E. g  e.  ( ~P X  i^i  Fin )
s  =  ( F `
 g ) ) )
2221elrab 3122 . . 3  |-  ( C  e.  { c  e.  (ACS `  X )  |  A. s  e.  c  E. g  e.  ( ~P X  i^i  Fin ) s  =  ( (mrCls `  c ) `  g ) }  <->  ( C  e.  (ACS `  X )  /\  A. s  e.  C  E. g  e.  ( ~P X  i^i  Fin )
s  =  ( F `
 g ) ) )
2314, 22syl6bb 261 . 2  |-  ( X  e.  _V  ->  ( C  e.  (NoeACS `  X
)  <->  ( C  e.  (ACS `  X )  /\  A. s  e.  C  E. g  e.  ( ~P X  i^i  Fin )
s  =  ( F `
 g ) ) ) )
241, 3, 23pm5.21nii 353 1  |-  ( C  e.  (NoeACS `  X
)  <->  ( C  e.  (ACS `  X )  /\  A. s  e.  C  E. g  e.  ( ~P X  i^i  Fin )
s  =  ( F `
 g ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2720   E.wrex 2721   {crab 2724   _Vcvv 2977    i^i cin 3332   ~Pcpw 3865   ` cfv 5423   Fincfn 7315  mrClscmrc 14526  ACScacs 14528  NoeACScnacs 29043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-rab 2729  df-v 2979  df-sbc 3192  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-iota 5386  df-fun 5425  df-fv 5431  df-nacs 29044
This theorem is referenced by:  nacsfg  29046  isnacs2  29047  isnacs3  29051  islnr3  29476
  Copyright terms: Public domain W3C validator