Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismtyima Structured version   Unicode version

Theorem ismtyima 29889
Description: The image of a ball under an isometry is another ball. (Contributed by Jeff Madsen, 31-Jan-2014.)
Assertion
Ref Expression
ismtyima  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  -> 
( F " ( P ( ball `  M
) R ) )  =  ( ( F `
 P ) (
ball `  N ) R ) )

Proof of Theorem ismtyima
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 5339 . . . . 5  |-  ( F
" ( P (
ball `  M ) R ) )  C_  ran  F
2 isismty 29887 . . . . . . . . . 10  |-  ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y
) )  ->  ( F  e.  ( M  Ismty  N )  <->  ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) ) ) )
32biimp3a 1323 . . . . . . . . 9  |-  ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  ->  ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) ) )
43adantr 465 . . . . . . . 8  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  -> 
( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) ) )
54simpld 459 . . . . . . 7  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  ->  F : X -1-1-onto-> Y )
6 f1of 5807 . . . . . . 7  |-  ( F : X -1-1-onto-> Y  ->  F : X
--> Y )
75, 6syl 16 . . . . . 6  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  ->  F : X --> Y )
8 frn 5728 . . . . . 6  |-  ( F : X --> Y  ->  ran  F  C_  Y )
97, 8syl 16 . . . . 5  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  ->  ran  F  C_  Y )
101, 9syl5ss 3508 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  -> 
( F " ( P ( ball `  M
) R ) ) 
C_  Y )
1110sseld 3496 . . 3  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  -> 
( x  e.  ( F " ( P ( ball `  M
) R ) )  ->  x  e.  Y
) )
12 simpl2 995 . . . . 5  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  ->  N  e.  ( *Met `  Y ) )
13 simprl 755 . . . . . 6  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  ->  P  e.  X )
14 ffvelrn 6010 . . . . . 6  |-  ( ( F : X --> Y  /\  P  e.  X )  ->  ( F `  P
)  e.  Y )
157, 13, 14syl2anc 661 . . . . 5  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  -> 
( F `  P
)  e.  Y )
16 simprr 756 . . . . 5  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  ->  R  e.  RR* )
17 blssm 20649 . . . . 5  |-  ( ( N  e.  ( *Met `  Y )  /\  ( F `  P )  e.  Y  /\  R  e.  RR* )  ->  ( ( F `  P ) ( ball `  N ) R ) 
C_  Y )
1812, 15, 16, 17syl3anc 1223 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  -> 
( ( F `  P ) ( ball `  N ) R ) 
C_  Y )
1918sseld 3496 . . 3  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  -> 
( x  e.  ( ( F `  P
) ( ball `  N
) R )  ->  x  e.  Y )
)
20 simpl1 994 . . . . . . . . 9  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  ->  M  e.  ( *Met `  X ) )
2120adantr 465 . . . . . . . 8  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y )  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  /\  x  e.  Y )  ->  M  e.  ( *Met `  X ) )
22 simplrr 760 . . . . . . . 8  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y )  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  /\  x  e.  Y )  ->  R  e.  RR* )
23 simplrl 759 . . . . . . . 8  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y )  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  /\  x  e.  Y )  ->  P  e.  X )
24 f1ocnv 5819 . . . . . . . . . 10  |-  ( F : X -1-1-onto-> Y  ->  `' F : Y -1-1-onto-> X )
25 f1of 5807 . . . . . . . . . 10  |-  ( `' F : Y -1-1-onto-> X  ->  `' F : Y --> X )
265, 24, 253syl 20 . . . . . . . . 9  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  ->  `' F : Y --> X )
27 ffvelrn 6010 . . . . . . . . 9  |-  ( ( `' F : Y --> X  /\  x  e.  Y )  ->  ( `' F `  x )  e.  X
)
2826, 27sylan 471 . . . . . . . 8  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y )  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  /\  x  e.  Y )  ->  ( `' F `  x )  e.  X
)
29 elbl2 20621 . . . . . . . 8  |-  ( ( ( M  e.  ( *Met `  X
)  /\  R  e.  RR* )  /\  ( P  e.  X  /\  ( `' F `  x )  e.  X ) )  ->  ( ( `' F `  x )  e.  ( P (
ball `  M ) R )  <->  ( P M ( `' F `  x ) )  < 
R ) )
3021, 22, 23, 28, 29syl22anc 1224 . . . . . . 7  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y )  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  /\  x  e.  Y )  ->  ( ( `' F `  x )  e.  ( P ( ball `  M
) R )  <->  ( P M ( `' F `  x ) )  < 
R ) )
314simprd 463 . . . . . . . . . . 11  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  ->  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) )
32 oveq1 6282 . . . . . . . . . . . . . 14  |-  ( x  =  P  ->  (
x M y )  =  ( P M y ) )
33 fveq2 5857 . . . . . . . . . . . . . . 15  |-  ( x  =  P  ->  ( F `  x )  =  ( F `  P ) )
3433oveq1d 6290 . . . . . . . . . . . . . 14  |-  ( x  =  P  ->  (
( F `  x
) N ( F `
 y ) )  =  ( ( F `
 P ) N ( F `  y
) ) )
3532, 34eqeq12d 2482 . . . . . . . . . . . . 13  |-  ( x  =  P  ->  (
( x M y )  =  ( ( F `  x ) N ( F `  y ) )  <->  ( P M y )  =  ( ( F `  P ) N ( F `  y ) ) ) )
36 oveq2 6283 . . . . . . . . . . . . . 14  |-  ( y  =  ( `' F `  x )  ->  ( P M y )  =  ( P M ( `' F `  x ) ) )
37 fveq2 5857 . . . . . . . . . . . . . . 15  |-  ( y  =  ( `' F `  x )  ->  ( F `  y )  =  ( F `  ( `' F `  x ) ) )
3837oveq2d 6291 . . . . . . . . . . . . . 14  |-  ( y  =  ( `' F `  x )  ->  (
( F `  P
) N ( F `
 y ) )  =  ( ( F `
 P ) N ( F `  ( `' F `  x ) ) ) )
3936, 38eqeq12d 2482 . . . . . . . . . . . . 13  |-  ( y  =  ( `' F `  x )  ->  (
( P M y )  =  ( ( F `  P ) N ( F `  y ) )  <->  ( P M ( `' F `  x ) )  =  ( ( F `  P ) N ( F `  ( `' F `  x ) ) ) ) )
4035, 39rspc2v 3216 . . . . . . . . . . . 12  |-  ( ( P  e.  X  /\  ( `' F `  x )  e.  X )  -> 
( A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x
) N ( F `
 y ) )  ->  ( P M ( `' F `  x ) )  =  ( ( F `  P ) N ( F `  ( `' F `  x ) ) ) ) )
4140impancom 440 . . . . . . . . . . 11  |-  ( ( P  e.  X  /\  A. x  e.  X  A. y  e.  X  (
x M y )  =  ( ( F `
 x ) N ( F `  y
) ) )  -> 
( ( `' F `  x )  e.  X  ->  ( P M ( `' F `  x ) )  =  ( ( F `  P ) N ( F `  ( `' F `  x ) ) ) ) )
4213, 31, 41syl2anc 661 . . . . . . . . . 10  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  -> 
( ( `' F `  x )  e.  X  ->  ( P M ( `' F `  x ) )  =  ( ( F `  P ) N ( F `  ( `' F `  x ) ) ) ) )
4342imp 429 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y )  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  /\  ( `' F `  x )  e.  X )  -> 
( P M ( `' F `  x ) )  =  ( ( F `  P ) N ( F `  ( `' F `  x ) ) ) )
4428, 43syldan 470 . . . . . . . 8  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y )  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  /\  x  e.  Y )  ->  ( P M ( `' F `  x ) )  =  ( ( F `  P ) N ( F `  ( `' F `  x ) ) ) )
4544breq1d 4450 . . . . . . 7  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y )  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  /\  x  e.  Y )  ->  ( ( P M ( `' F `  x ) )  < 
R  <->  ( ( F `
 P ) N ( F `  ( `' F `  x ) ) )  <  R
) )
4630, 45bitrd 253 . . . . . 6  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y )  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  /\  x  e.  Y )  ->  ( ( `' F `  x )  e.  ( P ( ball `  M
) R )  <->  ( ( F `  P ) N ( F `  ( `' F `  x ) ) )  <  R
) )
47 f1of1 5806 . . . . . . . . 9  |-  ( F : X -1-1-onto-> Y  ->  F : X -1-1-> Y )
485, 47syl 16 . . . . . . . 8  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  ->  F : X -1-1-> Y )
4948adantr 465 . . . . . . 7  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y )  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  /\  x  e.  Y )  ->  F : X -1-1-> Y
)
50 blssm 20649 . . . . . . . . 9  |-  ( ( M  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  M ) R ) 
C_  X )
5120, 13, 16, 50syl3anc 1223 . . . . . . . 8  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  -> 
( P ( ball `  M ) R ) 
C_  X )
5251adantr 465 . . . . . . 7  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y )  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  /\  x  e.  Y )  ->  ( P ( ball `  M ) R ) 
C_  X )
53 f1elima 6150 . . . . . . 7  |-  ( ( F : X -1-1-> Y  /\  ( `' F `  x )  e.  X  /\  ( P ( ball `  M ) R ) 
C_  X )  -> 
( ( F `  ( `' F `  x ) )  e.  ( F
" ( P (
ball `  M ) R ) )  <->  ( `' F `  x )  e.  ( P ( ball `  M ) R ) ) )
5449, 28, 52, 53syl3anc 1223 . . . . . 6  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y )  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  /\  x  e.  Y )  ->  ( ( F `  ( `' F `  x ) )  e.  ( F
" ( P (
ball `  M ) R ) )  <->  ( `' F `  x )  e.  ( P ( ball `  M ) R ) ) )
5512adantr 465 . . . . . . 7  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y )  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  /\  x  e.  Y )  ->  N  e.  ( *Met `  Y ) )
5615adantr 465 . . . . . . 7  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y )  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  /\  x  e.  Y )  ->  ( F `  P
)  e.  Y )
57 f1ocnvfv2 6162 . . . . . . . . 9  |-  ( ( F : X -1-1-onto-> Y  /\  x  e.  Y )  ->  ( F `  ( `' F `  x ) )  =  x )
585, 57sylan 471 . . . . . . . 8  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y )  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  /\  x  e.  Y )  ->  ( F `  ( `' F `  x ) )  =  x )
59 simpr 461 . . . . . . . 8  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y )  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  /\  x  e.  Y )  ->  x  e.  Y )
6058, 59eqeltrd 2548 . . . . . . 7  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y )  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  /\  x  e.  Y )  ->  ( F `  ( `' F `  x ) )  e.  Y )
61 elbl2 20621 . . . . . . 7  |-  ( ( ( N  e.  ( *Met `  Y
)  /\  R  e.  RR* )  /\  ( ( F `  P )  e.  Y  /\  ( F `  ( `' F `  x )
)  e.  Y ) )  ->  ( ( F `  ( `' F `  x )
)  e.  ( ( F `  P ) ( ball `  N
) R )  <->  ( ( F `  P ) N ( F `  ( `' F `  x ) ) )  <  R
) )
6255, 22, 56, 60, 61syl22anc 1224 . . . . . 6  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y )  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  /\  x  e.  Y )  ->  ( ( F `  ( `' F `  x ) )  e.  ( ( F `  P ) ( ball `  N
) R )  <->  ( ( F `  P ) N ( F `  ( `' F `  x ) ) )  <  R
) )
6346, 54, 623bitr4d 285 . . . . 5  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y )  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  /\  x  e.  Y )  ->  ( ( F `  ( `' F `  x ) )  e.  ( F
" ( P (
ball `  M ) R ) )  <->  ( F `  ( `' F `  x ) )  e.  ( ( F `  P ) ( ball `  N ) R ) ) )
6458eleq1d 2529 . . . . 5  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y )  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  /\  x  e.  Y )  ->  ( ( F `  ( `' F `  x ) )  e.  ( F
" ( P (
ball `  M ) R ) )  <->  x  e.  ( F " ( P ( ball `  M
) R ) ) ) )
6558eleq1d 2529 . . . . 5  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y )  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  /\  x  e.  Y )  ->  ( ( F `  ( `' F `  x ) )  e.  ( ( F `  P ) ( ball `  N
) R )  <->  x  e.  ( ( F `  P ) ( ball `  N ) R ) ) )
6663, 64, 653bitr3d 283 . . . 4  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y )  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  /\  x  e.  Y )  ->  ( x  e.  ( F " ( P ( ball `  M
) R ) )  <-> 
x  e.  ( ( F `  P ) ( ball `  N
) R ) ) )
6766ex 434 . . 3  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  -> 
( x  e.  Y  ->  ( x  e.  ( F " ( P ( ball `  M
) R ) )  <-> 
x  e.  ( ( F `  P ) ( ball `  N
) R ) ) ) )
6811, 19, 67pm5.21ndd 354 . 2  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  -> 
( x  e.  ( F " ( P ( ball `  M
) R ) )  <-> 
x  e.  ( ( F `  P ) ( ball `  N
) R ) ) )
6968eqrdv 2457 1  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( P  e.  X  /\  R  e.  RR* ) )  -> 
( F " ( P ( ball `  M
) R ) )  =  ( ( F `
 P ) (
ball `  N ) R ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   A.wral 2807    C_ wss 3469   class class class wbr 4440   `'ccnv 4991   ran crn 4993   "cima 4995   -->wf 5575   -1-1->wf1 5576   -1-1-onto->wf1o 5578   ` cfv 5579  (class class class)co 6275   RR*cxr 9616    < clt 9617   *Metcxmt 18167   ballcbl 18169    Ismty cismty 29884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-1st 6774  df-2nd 6775  df-map 7412  df-xr 9621  df-psmet 18175  df-xmet 18176  df-bl 18178  df-ismty 29885
This theorem is referenced by:  ismtyhmeolem  29890  ismtybndlem  29892
  Copyright terms: Public domain W3C validator