Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismtyhmeolem Structured version   Unicode version

Theorem ismtyhmeolem 30227
Description: Lemma for ismtyhmeo 30228. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
ismtyhmeo.1  |-  J  =  ( MetOpen `  M )
ismtyhmeo.2  |-  K  =  ( MetOpen `  N )
ismtyhmeolem.3  |-  ( ph  ->  M  e.  ( *Met `  X ) )
ismtyhmeolem.4  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
ismtyhmeolem.5  |-  ( ph  ->  F  e.  ( M 
Ismty  N ) )
Assertion
Ref Expression
ismtyhmeolem  |-  ( ph  ->  F  e.  ( J  Cn  K ) )

Proof of Theorem ismtyhmeolem
Dummy variables  u  r  w  x  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismtyhmeolem.5 . . . . 5  |-  ( ph  ->  F  e.  ( M 
Ismty  N ) )
2 ismtyhmeolem.3 . . . . . 6  |-  ( ph  ->  M  e.  ( *Met `  X ) )
3 ismtyhmeolem.4 . . . . . 6  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
4 isismty 30224 . . . . . 6  |-  ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y
) )  ->  ( F  e.  ( M  Ismty  N )  <->  ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) ) ) )
52, 3, 4syl2anc 661 . . . . 5  |-  ( ph  ->  ( F  e.  ( M  Ismty  N )  <->  ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  (
x M y )  =  ( ( F `
 x ) N ( F `  y
) ) ) ) )
61, 5mpbid 210 . . . 4  |-  ( ph  ->  ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) ) )
76simpld 459 . . 3  |-  ( ph  ->  F : X -1-1-onto-> Y )
8 f1of 5822 . . 3  |-  ( F : X -1-1-onto-> Y  ->  F : X
--> Y )
97, 8syl 16 . 2  |-  ( ph  ->  F : X --> Y )
103adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( w  e.  Y  /\  r  e.  RR* ) )  ->  N  e.  ( *Met `  Y ) )
112adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( w  e.  Y  /\  r  e.  RR* ) )  ->  M  e.  ( *Met `  X ) )
12 ismtycnv 30225 . . . . . . . . . 10  |-  ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y
) )  ->  ( F  e.  ( M  Ismty  N )  ->  `' F  e.  ( N  Ismty  M ) ) )
132, 3, 12syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( F  e.  ( M  Ismty  N )  ->  `' F  e.  ( N  Ismty  M ) ) )
141, 13mpd 15 . . . . . . . 8  |-  ( ph  ->  `' F  e.  ( N  Ismty  M ) )
1514adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( w  e.  Y  /\  r  e.  RR* ) )  ->  `' F  e.  ( N  Ismty  M ) )
16 simprl 755 . . . . . . 7  |-  ( (
ph  /\  ( w  e.  Y  /\  r  e.  RR* ) )  ->  w  e.  Y )
17 simprr 756 . . . . . . 7  |-  ( (
ph  /\  ( w  e.  Y  /\  r  e.  RR* ) )  -> 
r  e.  RR* )
18 ismtyima 30226 . . . . . . 7  |-  ( ( ( N  e.  ( *Met `  Y
)  /\  M  e.  ( *Met `  X
)  /\  `' F  e.  ( N  Ismty  M ) )  /\  ( w  e.  Y  /\  r  e.  RR* ) )  -> 
( `' F "
( w ( ball `  N ) r ) )  =  ( ( `' F `  w ) ( ball `  M
) r ) )
1910, 11, 15, 16, 17, 18syl32anc 1236 . . . . . 6  |-  ( (
ph  /\  ( w  e.  Y  /\  r  e.  RR* ) )  -> 
( `' F "
( w ( ball `  N ) r ) )  =  ( ( `' F `  w ) ( ball `  M
) r ) )
20 f1ocnv 5834 . . . . . . . . 9  |-  ( F : X -1-1-onto-> Y  ->  `' F : Y -1-1-onto-> X )
21 f1of 5822 . . . . . . . . 9  |-  ( `' F : Y -1-1-onto-> X  ->  `' F : Y --> X )
227, 20, 213syl 20 . . . . . . . 8  |-  ( ph  ->  `' F : Y --> X )
23 simpl 457 . . . . . . . 8  |-  ( ( w  e.  Y  /\  r  e.  RR* )  ->  w  e.  Y )
24 ffvelrn 6030 . . . . . . . 8  |-  ( ( `' F : Y --> X  /\  w  e.  Y )  ->  ( `' F `  w )  e.  X
)
2522, 23, 24syl2an 477 . . . . . . 7  |-  ( (
ph  /\  ( w  e.  Y  /\  r  e.  RR* ) )  -> 
( `' F `  w )  e.  X
)
26 ismtyhmeo.1 . . . . . . . 8  |-  J  =  ( MetOpen `  M )
2726blopn 20871 . . . . . . 7  |-  ( ( M  e.  ( *Met `  X )  /\  ( `' F `  w )  e.  X  /\  r  e.  RR* )  ->  ( ( `' F `  w ) ( ball `  M ) r )  e.  J )
2811, 25, 17, 27syl3anc 1228 . . . . . 6  |-  ( (
ph  /\  ( w  e.  Y  /\  r  e.  RR* ) )  -> 
( ( `' F `  w ) ( ball `  M ) r )  e.  J )
2919, 28eqeltrd 2555 . . . . 5  |-  ( (
ph  /\  ( w  e.  Y  /\  r  e.  RR* ) )  -> 
( `' F "
( w ( ball `  N ) r ) )  e.  J )
3029ralrimivva 2888 . . . 4  |-  ( ph  ->  A. w  e.  Y  A. r  e.  RR*  ( `' F " ( w ( ball `  N
) r ) )  e.  J )
31 fveq2 5872 . . . . . . . 8  |-  ( z  =  <. w ,  r
>.  ->  ( ( ball `  N ) `  z
)  =  ( (
ball `  N ) `  <. w ,  r
>. ) )
32 df-ov 6298 . . . . . . . 8  |-  ( w ( ball `  N
) r )  =  ( ( ball `  N
) `  <. w ,  r >. )
3331, 32syl6eqr 2526 . . . . . . 7  |-  ( z  =  <. w ,  r
>.  ->  ( ( ball `  N ) `  z
)  =  ( w ( ball `  N
) r ) )
3433imaeq2d 5343 . . . . . 6  |-  ( z  =  <. w ,  r
>.  ->  ( `' F " ( ( ball `  N
) `  z )
)  =  ( `' F " ( w ( ball `  N
) r ) ) )
3534eleq1d 2536 . . . . 5  |-  ( z  =  <. w ,  r
>.  ->  ( ( `' F " ( (
ball `  N ) `  z ) )  e.  J  <->  ( `' F " ( w ( ball `  N ) r ) )  e.  J ) )
3635ralxp 5150 . . . 4  |-  ( A. z  e.  ( Y  X.  RR* ) ( `' F " ( (
ball `  N ) `  z ) )  e.  J  <->  A. w  e.  Y  A. r  e.  RR*  ( `' F " ( w ( ball `  N
) r ) )  e.  J )
3730, 36sylibr 212 . . 3  |-  ( ph  ->  A. z  e.  ( Y  X.  RR* )
( `' F "
( ( ball `  N
) `  z )
)  e.  J )
38 blf 20778 . . . 4  |-  ( N  e.  ( *Met `  Y )  ->  ( ball `  N ) : ( Y  X.  RR* )
--> ~P Y )
39 ffn 5737 . . . 4  |-  ( (
ball `  N ) : ( Y  X.  RR* ) --> ~P Y  -> 
( ball `  N )  Fn  ( Y  X.  RR* ) )
40 imaeq2 5339 . . . . . 6  |-  ( u  =  ( ( ball `  N ) `  z
)  ->  ( `' F " u )  =  ( `' F "
( ( ball `  N
) `  z )
) )
4140eleq1d 2536 . . . . 5  |-  ( u  =  ( ( ball `  N ) `  z
)  ->  ( ( `' F " u )  e.  J  <->  ( `' F " ( ( ball `  N ) `  z
) )  e.  J
) )
4241ralrn 6035 . . . 4  |-  ( (
ball `  N )  Fn  ( Y  X.  RR* )  ->  ( A. u  e.  ran  ( ball `  N
) ( `' F " u )  e.  J  <->  A. z  e.  ( Y  X.  RR* ) ( `' F " ( (
ball `  N ) `  z ) )  e.  J ) )
433, 38, 39, 424syl 21 . . 3  |-  ( ph  ->  ( A. u  e. 
ran  ( ball `  N
) ( `' F " u )  e.  J  <->  A. z  e.  ( Y  X.  RR* ) ( `' F " ( (
ball `  N ) `  z ) )  e.  J ) )
4437, 43mpbird 232 . 2  |-  ( ph  ->  A. u  e.  ran  ( ball `  N )
( `' F "
u )  e.  J
)
4526mopntopon 20810 . . . 4  |-  ( M  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
)
462, 45syl 16 . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
47 ismtyhmeo.2 . . . . 5  |-  K  =  ( MetOpen `  N )
4847mopnval 20809 . . . 4  |-  ( N  e.  ( *Met `  Y )  ->  K  =  ( topGen `  ran  ( ball `  N )
) )
493, 48syl 16 . . 3  |-  ( ph  ->  K  =  ( topGen ` 
ran  ( ball `  N
) ) )
5047mopntopon 20810 . . . 4  |-  ( N  e.  ( *Met `  Y )  ->  K  e.  (TopOn `  Y )
)
513, 50syl 16 . . 3  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
5246, 49, 51tgcn 19621 . 2  |-  ( ph  ->  ( F  e.  ( J  Cn  K )  <-> 
( F : X --> Y  /\  A. u  e. 
ran  ( ball `  N
) ( `' F " u )  e.  J
) ) )
539, 44, 52mpbir2and 920 1  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2817   ~Pcpw 4016   <.cop 4039    X. cxp 5003   `'ccnv 5004   ran crn 5006   "cima 5008    Fn wfn 5589   -->wf 5590   -1-1-onto->wf1o 5593   ` cfv 5594  (class class class)co 6295   RR*cxr 9639   topGenctg 14710   *Metcxmt 18273   ballcbl 18275   MetOpencmopn 18278  TopOnctopon 19264    Cn ccn 19593    Ismty cismty 30221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-er 7323  df-map 7434  df-en 7529  df-dom 7530  df-sdom 7531  df-sup 7913  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-n0 10808  df-z 10877  df-uz 11095  df-q 11195  df-rp 11233  df-xneg 11330  df-xadd 11331  df-xmul 11332  df-topgen 14716  df-psmet 18281  df-xmet 18282  df-bl 18284  df-mopn 18285  df-top 19268  df-bases 19270  df-topon 19271  df-cn 19596  df-ismty 30222
This theorem is referenced by:  ismtyhmeo  30228
  Copyright terms: Public domain W3C validator