Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismtybndlem Structured version   Unicode version

Theorem ismtybndlem 32052
Description: Lemma for ismtybnd 32053. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 19-Jan-2014.)
Assertion
Ref Expression
ismtybndlem  |-  ( ( N  e.  ( *Met `  Y )  /\  F  e.  ( M  Ismty  N )
)  ->  ( M  e.  ( Bnd `  X
)  ->  N  e.  ( Bnd `  Y ) ) )

Proof of Theorem ismtybndlem
Dummy variables  w  r  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isismty 32047 . . . . . . . . . . . . 13  |-  ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y
) )  ->  ( F  e.  ( M  Ismty  N )  <->  ( F : X -1-1-onto-> Y  /\  A. z  e.  X  A. w  e.  X  ( z M w )  =  ( ( F `  z ) N ( F `  w ) ) ) ) )
21biimp3a 1364 . . . . . . . . . . . 12  |-  ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  ->  ( F : X -1-1-onto-> Y  /\  A. z  e.  X  A. w  e.  X  ( z M w )  =  ( ( F `  z ) N ( F `  w ) ) ) )
32simpld 460 . . . . . . . . . . 11  |-  ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  ->  F : X
-1-1-onto-> Y )
4 f1ocnv 5840 . . . . . . . . . . 11  |-  ( F : X -1-1-onto-> Y  ->  `' F : Y -1-1-onto-> X )
5 f1of 5828 . . . . . . . . . . 11  |-  ( `' F : Y -1-1-onto-> X  ->  `' F : Y --> X )
63, 4, 53syl 18 . . . . . . . . . 10  |-  ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  ->  `' F : Y --> X )
76ffvelrnda 6034 . . . . . . . . 9  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  y  e.  Y )  ->  ( `' F `  y )  e.  X )
8 oveq1 6309 . . . . . . . . . . . 12  |-  ( x  =  ( `' F `  y )  ->  (
x ( ball `  M
) r )  =  ( ( `' F `  y ) ( ball `  M ) r ) )
98eqeq2d 2436 . . . . . . . . . . 11  |-  ( x  =  ( `' F `  y )  ->  ( X  =  ( x
( ball `  M )
r )  <->  X  =  ( ( `' F `  y ) ( ball `  M ) r ) ) )
109rexbidv 2939 . . . . . . . . . 10  |-  ( x  =  ( `' F `  y )  ->  ( E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  <->  E. r  e.  RR+  X  =  ( ( `' F `  y ) ( ball `  M ) r ) ) )
1110rspcv 3178 . . . . . . . . 9  |-  ( ( `' F `  y )  e.  X  ->  ( A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  ->  E. r  e.  RR+  X  =  ( ( `' F `  y ) ( ball `  M
) r ) ) )
127, 11syl 17 . . . . . . . 8  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  y  e.  Y )  ->  ( A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  ->  E. r  e.  RR+  X  =  ( ( `' F `  y ) ( ball `  M
) r ) ) )
13 imaeq2 5180 . . . . . . . . . . 11  |-  ( X  =  ( ( `' F `  y ) ( ball `  M
) r )  -> 
( F " X
)  =  ( F
" ( ( `' F `  y ) ( ball `  M
) r ) ) )
14 f1ofo 5835 . . . . . . . . . . . . . 14  |-  ( F : X -1-1-onto-> Y  ->  F : X -onto-> Y )
15 foima 5812 . . . . . . . . . . . . . 14  |-  ( F : X -onto-> Y  -> 
( F " X
)  =  Y )
163, 14, 153syl 18 . . . . . . . . . . . . 13  |-  ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  ->  ( F " X )  =  Y )
1716adantr 466 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( y  e.  Y  /\  r  e.  RR+ ) )  -> 
( F " X
)  =  Y )
18 rpxr 11310 . . . . . . . . . . . . . . . 16  |-  ( r  e.  RR+  ->  r  e. 
RR* )
1918adantl 467 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  r  e.  RR+ )  ->  r  e. 
RR* )
207, 19anim12dan 845 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( y  e.  Y  /\  r  e.  RR+ ) )  -> 
( ( `' F `  y )  e.  X  /\  r  e.  RR* )
)
21 ismtyima 32049 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( ( `' F `  y )  e.  X  /\  r  e.  RR* ) )  -> 
( F " (
( `' F `  y ) ( ball `  M ) r ) )  =  ( ( F `  ( `' F `  y ) ) ( ball `  N
) r ) )
2220, 21syldan 472 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( y  e.  Y  /\  r  e.  RR+ ) )  -> 
( F " (
( `' F `  y ) ( ball `  M ) r ) )  =  ( ( F `  ( `' F `  y ) ) ( ball `  N
) r ) )
23 simpl 458 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  Y  /\  r  e.  RR+ )  -> 
y  e.  Y )
24 f1ocnvfv2 6188 . . . . . . . . . . . . . . 15  |-  ( ( F : X -1-1-onto-> Y  /\  y  e.  Y )  ->  ( F `  ( `' F `  y ) )  =  y )
253, 23, 24syl2an 479 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( y  e.  Y  /\  r  e.  RR+ ) )  -> 
( F `  ( `' F `  y ) )  =  y )
2625oveq1d 6317 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( y  e.  Y  /\  r  e.  RR+ ) )  -> 
( ( F `  ( `' F `  y ) ) ( ball `  N
) r )  =  ( y ( ball `  N ) r ) )
2722, 26eqtrd 2463 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( y  e.  Y  /\  r  e.  RR+ ) )  -> 
( F " (
( `' F `  y ) ( ball `  M ) r ) )  =  ( y ( ball `  N
) r ) )
2817, 27eqeq12d 2444 . . . . . . . . . . 11  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( y  e.  Y  /\  r  e.  RR+ ) )  -> 
( ( F " X )  =  ( F " ( ( `' F `  y ) ( ball `  M
) r ) )  <-> 
Y  =  ( y ( ball `  N
) r ) ) )
2913, 28syl5ib 222 . . . . . . . . . 10  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( y  e.  Y  /\  r  e.  RR+ ) )  -> 
( X  =  ( ( `' F `  y ) ( ball `  M ) r )  ->  Y  =  ( y ( ball `  N
) r ) ) )
3029anassrs 652 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y )  /\  F  e.  ( M  Ismty  N ) )  /\  y  e.  Y )  /\  r  e.  RR+ )  ->  ( X  =  ( ( `' F `  y ) ( ball `  M
) r )  ->  Y  =  ( y
( ball `  N )
r ) ) )
3130reximdva 2900 . . . . . . . 8  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  y  e.  Y )  ->  ( E. r  e.  RR+  X  =  ( ( `' F `  y ) ( ball `  M ) r )  ->  E. r  e.  RR+  Y  =  ( y (
ball `  N )
r ) ) )
3212, 31syld 45 . . . . . . 7  |-  ( ( ( M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  y  e.  Y )  ->  ( A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  ->  E. r  e.  RR+  Y  =  ( y (
ball `  N )
r ) ) )
3332ralrimdva 2843 . . . . . 6  |-  ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  ->  ( A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  ->  A. y  e.  Y  E. r  e.  RR+  Y  =  ( y ( ball `  N ) r ) ) )
34 simp2 1006 . . . . . 6  |-  ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  ->  N  e.  ( *Met `  Y
) )
3533, 34jctild 545 . . . . 5  |-  ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  ->  ( A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  ->  ( N  e.  ( *Met `  Y )  /\  A. y  e.  Y  E. r  e.  RR+  Y  =  ( y ( ball `  N ) r ) ) ) )
36353expib 1208 . . . 4  |-  ( M  e.  ( *Met `  X )  ->  (
( N  e.  ( *Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  ->  ( A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  ->  ( N  e.  ( *Met `  Y )  /\  A. y  e.  Y  E. r  e.  RR+  Y  =  ( y ( ball `  N ) r ) ) ) ) )
3736com12 32 . . 3  |-  ( ( N  e.  ( *Met `  Y )  /\  F  e.  ( M  Ismty  N )
)  ->  ( M  e.  ( *Met `  X )  ->  ( A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  ->  ( N  e.  ( *Met `  Y )  /\  A. y  e.  Y  E. r  e.  RR+  Y  =  ( y ( ball `  N ) r ) ) ) ) )
3837impd 432 . 2  |-  ( ( N  e.  ( *Met `  Y )  /\  F  e.  ( M  Ismty  N )
)  ->  ( ( M  e.  ( *Met `  X )  /\  A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r ) )  ->  ( N  e.  ( *Met `  Y )  /\  A. y  e.  Y  E. r  e.  RR+  Y  =  ( y ( ball `  N ) r ) ) ) )
39 isbndx 32028 . 2  |-  ( M  e.  ( Bnd `  X
)  <->  ( M  e.  ( *Met `  X )  /\  A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r ) ) )
40 isbndx 32028 . 2  |-  ( N  e.  ( Bnd `  Y
)  <->  ( N  e.  ( *Met `  Y )  /\  A. y  e.  Y  E. r  e.  RR+  Y  =  ( y ( ball `  N ) r ) ) )
4138, 39, 403imtr4g 273 1  |-  ( ( N  e.  ( *Met `  Y )  /\  F  e.  ( M  Ismty  N )
)  ->  ( M  e.  ( Bnd `  X
)  ->  N  e.  ( Bnd `  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868   A.wral 2775   E.wrex 2776   `'ccnv 4849   "cima 4853   -->wf 5594   -onto->wfo 5596   -1-1-onto->wf1o 5597   ` cfv 5598  (class class class)co 6302   RR*cxr 9675   RR+crp 11303   *Metcxmt 18943   ballcbl 18945   Bndcbnd 32013    Ismty cismty 32044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-sep 4543  ax-nul 4552  ax-pow 4599  ax-pr 4657  ax-un 6594  ax-cnex 9596  ax-resscn 9597  ax-1cn 9598  ax-icn 9599  ax-addcl 9600  ax-addrcl 9601  ax-mulcl 9602  ax-mulrcl 9603  ax-mulcom 9604  ax-addass 9605  ax-mulass 9606  ax-distr 9607  ax-i2m1 9608  ax-1ne0 9609  ax-1rid 9610  ax-rnegex 9611  ax-rrecex 9612  ax-cnre 9613  ax-pre-lttri 9614  ax-pre-lttrn 9615  ax-pre-ltadd 9616  ax-pre-mulgt0 9617
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-id 4765  df-po 4771  df-so 4772  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-res 4862  df-ima 4863  df-iota 5562  df-fun 5600  df-fn 5601  df-f 5602  df-f1 5603  df-fo 5604  df-f1o 5605  df-fv 5606  df-riota 6264  df-ov 6305  df-oprab 6306  df-mpt2 6307  df-1st 6804  df-2nd 6805  df-er 7368  df-ec 7370  df-map 7479  df-en 7575  df-dom 7576  df-sdom 7577  df-pnf 9678  df-mnf 9679  df-xr 9680  df-ltxr 9681  df-le 9682  df-sub 9863  df-neg 9864  df-div 10271  df-2 10669  df-rp 11304  df-xneg 11410  df-xadd 11411  df-xmul 11412  df-psmet 18950  df-xmet 18951  df-met 18952  df-bl 18953  df-bnd 32025  df-ismty 32045
This theorem is referenced by:  ismtybnd  32053
  Copyright terms: Public domain W3C validator