Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismtybndlem Unicode version

Theorem ismtybndlem 26405
Description: Lemma for ismtybnd 26406. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 19-Jan-2014.)
Assertion
Ref Expression
ismtybndlem  |-  ( ( N  e.  ( * Met `  Y )  /\  F  e.  ( M  Ismty  N )
)  ->  ( M  e.  ( Bnd `  X
)  ->  N  e.  ( Bnd `  Y ) ) )

Proof of Theorem ismtybndlem
Dummy variables  w  r  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isismty 26400 . . . . . . . . . . . . 13  |-  ( ( M  e.  ( * Met `  X )  /\  N  e.  ( * Met `  Y
) )  ->  ( F  e.  ( M  Ismty  N )  <->  ( F : X -1-1-onto-> Y  /\  A. z  e.  X  A. w  e.  X  ( z M w )  =  ( ( F `  z ) N ( F `  w ) ) ) ) )
21biimp3a 1283 . . . . . . . . . . . 12  |-  ( ( M  e.  ( * Met `  X )  /\  N  e.  ( * Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  ->  ( F : X -1-1-onto-> Y  /\  A. z  e.  X  A. w  e.  X  ( z M w )  =  ( ( F `  z ) N ( F `  w ) ) ) )
32simpld 446 . . . . . . . . . . 11  |-  ( ( M  e.  ( * Met `  X )  /\  N  e.  ( * Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  ->  F : X
-1-1-onto-> Y )
4 f1ocnv 5646 . . . . . . . . . . 11  |-  ( F : X -1-1-onto-> Y  ->  `' F : Y -1-1-onto-> X )
5 f1of 5633 . . . . . . . . . . 11  |-  ( `' F : Y -1-1-onto-> X  ->  `' F : Y --> X )
63, 4, 53syl 19 . . . . . . . . . 10  |-  ( ( M  e.  ( * Met `  X )  /\  N  e.  ( * Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  ->  `' F : Y --> X )
76ffvelrnda 5829 . . . . . . . . 9  |-  ( ( ( M  e.  ( * Met `  X
)  /\  N  e.  ( * Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  y  e.  Y )  ->  ( `' F `  y )  e.  X )
8 oveq1 6047 . . . . . . . . . . . 12  |-  ( x  =  ( `' F `  y )  ->  (
x ( ball `  M
) r )  =  ( ( `' F `  y ) ( ball `  M ) r ) )
98eqeq2d 2415 . . . . . . . . . . 11  |-  ( x  =  ( `' F `  y )  ->  ( X  =  ( x
( ball `  M )
r )  <->  X  =  ( ( `' F `  y ) ( ball `  M ) r ) ) )
109rexbidv 2687 . . . . . . . . . 10  |-  ( x  =  ( `' F `  y )  ->  ( E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  <->  E. r  e.  RR+  X  =  ( ( `' F `  y ) ( ball `  M ) r ) ) )
1110rspcv 3008 . . . . . . . . 9  |-  ( ( `' F `  y )  e.  X  ->  ( A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  ->  E. r  e.  RR+  X  =  ( ( `' F `  y ) ( ball `  M
) r ) ) )
127, 11syl 16 . . . . . . . 8  |-  ( ( ( M  e.  ( * Met `  X
)  /\  N  e.  ( * Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  y  e.  Y )  ->  ( A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  ->  E. r  e.  RR+  X  =  ( ( `' F `  y ) ( ball `  M
) r ) ) )
13 imaeq2 5158 . . . . . . . . . . 11  |-  ( X  =  ( ( `' F `  y ) ( ball `  M
) r )  -> 
( F " X
)  =  ( F
" ( ( `' F `  y ) ( ball `  M
) r ) ) )
14 f1ofo 5640 . . . . . . . . . . . . . 14  |-  ( F : X -1-1-onto-> Y  ->  F : X -onto-> Y )
15 foima 5617 . . . . . . . . . . . . . 14  |-  ( F : X -onto-> Y  -> 
( F " X
)  =  Y )
163, 14, 153syl 19 . . . . . . . . . . . . 13  |-  ( ( M  e.  ( * Met `  X )  /\  N  e.  ( * Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  ->  ( F " X )  =  Y )
1716adantr 452 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ( * Met `  X
)  /\  N  e.  ( * Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( y  e.  Y  /\  r  e.  RR+ ) )  -> 
( F " X
)  =  Y )
18 rpxr 10575 . . . . . . . . . . . . . . . 16  |-  ( r  e.  RR+  ->  r  e. 
RR* )
1918adantl 453 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  ( * Met `  X
)  /\  N  e.  ( * Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  r  e.  RR+ )  ->  r  e. 
RR* )
207, 19anim12dan 811 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ( * Met `  X
)  /\  N  e.  ( * Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( y  e.  Y  /\  r  e.  RR+ ) )  -> 
( ( `' F `  y )  e.  X  /\  r  e.  RR* )
)
21 ismtyima 26402 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ( * Met `  X
)  /\  N  e.  ( * Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( ( `' F `  y )  e.  X  /\  r  e.  RR* ) )  -> 
( F " (
( `' F `  y ) ( ball `  M ) r ) )  =  ( ( F `  ( `' F `  y ) ) ( ball `  N
) r ) )
2220, 21syldan 457 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( * Met `  X
)  /\  N  e.  ( * Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( y  e.  Y  /\  r  e.  RR+ ) )  -> 
( F " (
( `' F `  y ) ( ball `  M ) r ) )  =  ( ( F `  ( `' F `  y ) ) ( ball `  N
) r ) )
23 simpl 444 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  Y  /\  r  e.  RR+ )  -> 
y  e.  Y )
24 f1ocnvfv2 5974 . . . . . . . . . . . . . . 15  |-  ( ( F : X -1-1-onto-> Y  /\  y  e.  Y )  ->  ( F `  ( `' F `  y ) )  =  y )
253, 23, 24syl2an 464 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ( * Met `  X
)  /\  N  e.  ( * Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( y  e.  Y  /\  r  e.  RR+ ) )  -> 
( F `  ( `' F `  y ) )  =  y )
2625oveq1d 6055 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( * Met `  X
)  /\  N  e.  ( * Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( y  e.  Y  /\  r  e.  RR+ ) )  -> 
( ( F `  ( `' F `  y ) ) ( ball `  N
) r )  =  ( y ( ball `  N ) r ) )
2722, 26eqtrd 2436 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ( * Met `  X
)  /\  N  e.  ( * Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( y  e.  Y  /\  r  e.  RR+ ) )  -> 
( F " (
( `' F `  y ) ( ball `  M ) r ) )  =  ( y ( ball `  N
) r ) )
2817, 27eqeq12d 2418 . . . . . . . . . . 11  |-  ( ( ( M  e.  ( * Met `  X
)  /\  N  e.  ( * Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( y  e.  Y  /\  r  e.  RR+ ) )  -> 
( ( F " X )  =  ( F " ( ( `' F `  y ) ( ball `  M
) r ) )  <-> 
Y  =  ( y ( ball `  N
) r ) ) )
2913, 28syl5ib 211 . . . . . . . . . 10  |-  ( ( ( M  e.  ( * Met `  X
)  /\  N  e.  ( * Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  ( y  e.  Y  /\  r  e.  RR+ ) )  -> 
( X  =  ( ( `' F `  y ) ( ball `  M ) r )  ->  Y  =  ( y ( ball `  N
) r ) ) )
3029anassrs 630 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( * Met `  X
)  /\  N  e.  ( * Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  y  e.  Y )  /\  r  e.  RR+ )  ->  ( X  =  ( ( `' F `  y ) ( ball `  M
) r )  ->  Y  =  ( y
( ball `  N )
r ) ) )
3130reximdva 2778 . . . . . . . 8  |-  ( ( ( M  e.  ( * Met `  X
)  /\  N  e.  ( * Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  y  e.  Y )  ->  ( E. r  e.  RR+  X  =  ( ( `' F `  y ) ( ball `  M ) r )  ->  E. r  e.  RR+  Y  =  ( y (
ball `  N )
r ) ) )
3212, 31syld 42 . . . . . . 7  |-  ( ( ( M  e.  ( * Met `  X
)  /\  N  e.  ( * Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  /\  y  e.  Y )  ->  ( A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  ->  E. r  e.  RR+  Y  =  ( y (
ball `  N )
r ) ) )
3332ralrimdva 2756 . . . . . 6  |-  ( ( M  e.  ( * Met `  X )  /\  N  e.  ( * Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  ->  ( A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  ->  A. y  e.  Y  E. r  e.  RR+  Y  =  ( y ( ball `  N ) r ) ) )
34 simp2 958 . . . . . 6  |-  ( ( M  e.  ( * Met `  X )  /\  N  e.  ( * Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  ->  N  e.  ( * Met `  Y
) )
3533, 34jctild 528 . . . . 5  |-  ( ( M  e.  ( * Met `  X )  /\  N  e.  ( * Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  ->  ( A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  ->  ( N  e.  ( * Met `  Y
)  /\  A. y  e.  Y  E. r  e.  RR+  Y  =  ( y ( ball `  N
) r ) ) ) )
36353expib 1156 . . . 4  |-  ( M  e.  ( * Met `  X )  ->  (
( N  e.  ( * Met `  Y
)  /\  F  e.  ( M  Ismty  N ) )  ->  ( A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  ->  ( N  e.  ( * Met `  Y
)  /\  A. y  e.  Y  E. r  e.  RR+  Y  =  ( y ( ball `  N
) r ) ) ) ) )
3736com12 29 . . 3  |-  ( ( N  e.  ( * Met `  Y )  /\  F  e.  ( M  Ismty  N )
)  ->  ( M  e.  ( * Met `  X
)  ->  ( A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  ->  ( N  e.  ( * Met `  Y
)  /\  A. y  e.  Y  E. r  e.  RR+  Y  =  ( y ( ball `  N
) r ) ) ) ) )
3837imp3a 421 . 2  |-  ( ( N  e.  ( * Met `  Y )  /\  F  e.  ( M  Ismty  N )
)  ->  ( ( M  e.  ( * Met `  X )  /\  A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r ) )  ->  ( N  e.  ( * Met `  Y
)  /\  A. y  e.  Y  E. r  e.  RR+  Y  =  ( y ( ball `  N
) r ) ) ) )
39 isbndx 26381 . 2  |-  ( M  e.  ( Bnd `  X
)  <->  ( M  e.  ( * Met `  X
)  /\  A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M
) r ) ) )
40 isbndx 26381 . 2  |-  ( N  e.  ( Bnd `  Y
)  <->  ( N  e.  ( * Met `  Y
)  /\  A. y  e.  Y  E. r  e.  RR+  Y  =  ( y ( ball `  N
) r ) ) )
4138, 39, 403imtr4g 262 1  |-  ( ( N  e.  ( * Met `  Y )  /\  F  e.  ( M  Ismty  N )
)  ->  ( M  e.  ( Bnd `  X
)  ->  N  e.  ( Bnd `  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667   `'ccnv 4836   "cima 4840   -->wf 5409   -onto->wfo 5411   -1-1-onto->wf1o 5412   ` cfv 5413  (class class class)co 6040   RR*cxr 9075   RR+crp 10568   * Metcxmt 16641   ballcbl 16643   Bndcbnd 26366    Ismty cismty 26397
This theorem is referenced by:  ismtybnd  26406
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-po 4463  df-so 4464  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-er 6864  df-ec 6866  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-2 10014  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-bnd 26378  df-ismty 26398
  Copyright terms: Public domain W3C validator