MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismri2dd Structured version   Unicode version

Theorem ismri2dd 14584
Description: Definition of independence of a subset of the base set in a Moore system. One-way deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ismri2.1  |-  N  =  (mrCls `  A )
ismri2.2  |-  I  =  (mrInd `  A )
ismri2d.3  |-  ( ph  ->  A  e.  (Moore `  X ) )
ismri2d.4  |-  ( ph  ->  S  C_  X )
ismri2dd.5  |-  ( ph  ->  A. x  e.  S  -.  x  e.  ( N `  ( S  \  { x } ) ) )
Assertion
Ref Expression
ismri2dd  |-  ( ph  ->  S  e.  I )
Distinct variable groups:    x, A    x, S
Allowed substitution hints:    ph( x)    I( x)    N( x)    X( x)

Proof of Theorem ismri2dd
StepHypRef Expression
1 ismri2dd.5 . 2  |-  ( ph  ->  A. x  e.  S  -.  x  e.  ( N `  ( S  \  { x } ) ) )
2 ismri2.1 . . 3  |-  N  =  (mrCls `  A )
3 ismri2.2 . . 3  |-  I  =  (mrInd `  A )
4 ismri2d.3 . . 3  |-  ( ph  ->  A  e.  (Moore `  X ) )
5 ismri2d.4 . . 3  |-  ( ph  ->  S  C_  X )
62, 3, 4, 5ismri2d 14583 . 2  |-  ( ph  ->  ( S  e.  I  <->  A. x  e.  S  -.  x  e.  ( N `  ( S  \  {
x } ) ) ) )
71, 6mpbird 232 1  |-  ( ph  ->  S  e.  I )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1369    e. wcel 1756   A.wral 2727    \ cdif 3337    C_ wss 3340   {csn 3889   ` cfv 5430  Moorecmre 14532  mrClscmrc 14533  mrIndcmri 14534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-rab 2736  df-v 2986  df-sbc 3199  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-op 3896  df-uni 4104  df-br 4305  df-opab 4363  df-mpt 4364  df-id 4648  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-iota 5393  df-fun 5432  df-fv 5438  df-mre 14536  df-mri 14538
This theorem is referenced by:  mrissmrid  14591  mreexmrid  14593  acsfiindd  15359
  Copyright terms: Public domain W3C validator