MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismri2dad Structured version   Unicode version

Theorem ismri2dad 15494
Description: Consequence of a set in a Moore system being independent. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ismri2dad.1  |-  N  =  (mrCls `  A )
ismri2dad.2  |-  I  =  (mrInd `  A )
ismri2dad.3  |-  ( ph  ->  A  e.  (Moore `  X ) )
ismri2dad.4  |-  ( ph  ->  S  e.  I )
ismri2dad.5  |-  ( ph  ->  Y  e.  S )
Assertion
Ref Expression
ismri2dad  |-  ( ph  ->  -.  Y  e.  ( N `  ( S 
\  { Y }
) ) )

Proof of Theorem ismri2dad
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ismri2dad.4 . . 3  |-  ( ph  ->  S  e.  I )
2 ismri2dad.1 . . . 4  |-  N  =  (mrCls `  A )
3 ismri2dad.2 . . . 4  |-  I  =  (mrInd `  A )
4 ismri2dad.3 . . . 4  |-  ( ph  ->  A  e.  (Moore `  X ) )
53, 4, 1mrissd 15493 . . . 4  |-  ( ph  ->  S  C_  X )
62, 3, 4, 5ismri2d 15490 . . 3  |-  ( ph  ->  ( S  e.  I  <->  A. x  e.  S  -.  x  e.  ( N `  ( S  \  {
x } ) ) ) )
71, 6mpbid 213 . 2  |-  ( ph  ->  A. x  e.  S  -.  x  e.  ( N `  ( S  \  { x } ) ) )
8 ismri2dad.5 . . 3  |-  ( ph  ->  Y  e.  S )
9 simpr 462 . . . . 5  |-  ( (
ph  /\  x  =  Y )  ->  x  =  Y )
109sneqd 4014 . . . . . . 7  |-  ( (
ph  /\  x  =  Y )  ->  { x }  =  { Y } )
1110difeq2d 3589 . . . . . 6  |-  ( (
ph  /\  x  =  Y )  ->  ( S  \  { x }
)  =  ( S 
\  { Y }
) )
1211fveq2d 5885 . . . . 5  |-  ( (
ph  /\  x  =  Y )  ->  ( N `  ( S  \  { x } ) )  =  ( N `
 ( S  \  { Y } ) ) )
139, 12eleq12d 2511 . . . 4  |-  ( (
ph  /\  x  =  Y )  ->  (
x  e.  ( N `
 ( S  \  { x } ) )  <->  Y  e.  ( N `  ( S  \  { Y } ) ) ) )
1413notbid 295 . . 3  |-  ( (
ph  /\  x  =  Y )  ->  ( -.  x  e.  ( N `  ( S  \  { x } ) )  <->  -.  Y  e.  ( N `  ( S 
\  { Y }
) ) ) )
158, 14rspcdv 3191 . 2  |-  ( ph  ->  ( A. x  e.  S  -.  x  e.  ( N `  ( S  \  { x }
) )  ->  -.  Y  e.  ( N `  ( S  \  { Y } ) ) ) )
167, 15mpd 15 1  |-  ( ph  ->  -.  Y  e.  ( N `  ( S 
\  { Y }
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1870   A.wral 2782    \ cdif 3439   {csn 4002   ` cfv 5601  Moorecmre 15439  mrClscmrc 15440  mrIndcmri 15441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-iota 5565  df-fun 5603  df-fv 5609  df-mre 15443  df-mri 15445
This theorem is referenced by:  mrieqv2d  15496  mreexmrid  15500  mreexexlem2d  15502  acsfiindd  16374
  Copyright terms: Public domain W3C validator