Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismrer1 Structured version   Unicode version

Theorem ismrer1 32134
Description: An isometry between  RR and  RR ^ 1. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
ismrer1.1  |-  R  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
ismrer1.2  |-  F  =  ( x  e.  RR  |->  ( { A }  X.  { x } ) )
Assertion
Ref Expression
ismrer1  |-  ( A  e.  V  ->  F  e.  ( R  Ismty  ( Rn
`  { A }
) ) )
Distinct variable group:    x, A
Allowed substitution hints:    R( x)    F( x)    V( x)

Proof of Theorem ismrer1
Dummy variables  k 
y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 4008 . . . . . . . 8  |-  ( y  =  A  ->  { y }  =  { A } )
21xpeq1d 4876 . . . . . . 7  |-  ( y  =  A  ->  ( { y }  X.  { x } )  =  ( { A }  X.  { x }
) )
32mpteq2dv 4511 . . . . . 6  |-  ( y  =  A  ->  (
x  e.  RR  |->  ( { y }  X.  { x } ) )  =  ( x  e.  RR  |->  ( { A }  X.  {
x } ) ) )
4 ismrer1.2 . . . . . 6  |-  F  =  ( x  e.  RR  |->  ( { A }  X.  { x } ) )
53, 4syl6eqr 2481 . . . . 5  |-  ( y  =  A  ->  (
x  e.  RR  |->  ( { y }  X.  { x } ) )  =  F )
6 f1oeq1 5822 . . . . 5  |-  ( ( x  e.  RR  |->  ( { y }  X.  { x } ) )  =  F  -> 
( ( x  e.  RR  |->  ( { y }  X.  { x } ) ) : RR -1-1-onto-> ( RR  ^m  {
y } )  <->  F : RR
-1-1-onto-> ( RR  ^m  { y } ) ) )
75, 6syl 17 . . . 4  |-  ( y  =  A  ->  (
( x  e.  RR  |->  ( { y }  X.  { x } ) ) : RR -1-1-onto-> ( RR  ^m  {
y } )  <->  F : RR
-1-1-onto-> ( RR  ^m  { y } ) ) )
81oveq2d 6321 . . . . 5  |-  ( y  =  A  ->  ( RR  ^m  { y } )  =  ( RR 
^m  { A }
) )
9 f1oeq3 5824 . . . . 5  |-  ( ( RR  ^m  { y } )  =  ( RR  ^m  { A } )  ->  ( F : RR -1-1-onto-> ( RR  ^m  {
y } )  <->  F : RR
-1-1-onto-> ( RR  ^m  { A } ) ) )
108, 9syl 17 . . . 4  |-  ( y  =  A  ->  ( F : RR -1-1-onto-> ( RR  ^m  {
y } )  <->  F : RR
-1-1-onto-> ( RR  ^m  { A } ) ) )
117, 10bitrd 256 . . 3  |-  ( y  =  A  ->  (
( x  e.  RR  |->  ( { y }  X.  { x } ) ) : RR -1-1-onto-> ( RR  ^m  {
y } )  <->  F : RR
-1-1-onto-> ( RR  ^m  { A } ) ) )
12 eqid 2422 . . . 4  |-  { y }  =  { y }
13 reex 9637 . . . 4  |-  RR  e.  _V
14 vex 3083 . . . 4  |-  y  e. 
_V
15 eqid 2422 . . . 4  |-  ( x  e.  RR  |->  ( { y }  X.  {
x } ) )  =  ( x  e.  RR  |->  ( { y }  X.  { x } ) )
1612, 13, 14, 15mapsnf1o3 7531 . . 3  |-  ( x  e.  RR  |->  ( { y }  X.  {
x } ) ) : RR -1-1-onto-> ( RR  ^m  {
y } )
1711, 16vtoclg 3139 . 2  |-  ( A  e.  V  ->  F : RR -1-1-onto-> ( RR  ^m  { A } ) )
18 sneq 4008 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  { x }  =  { y } )
1918xpeq2d 4877 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  ( { A }  X.  {
x } )  =  ( { A }  X.  { y } ) )
20 snex 4662 . . . . . . . . . . . . . . . . 17  |-  { A }  e.  _V
21 snex 4662 . . . . . . . . . . . . . . . . 17  |-  { x }  e.  _V
2220, 21xpex 6609 . . . . . . . . . . . . . . . 16  |-  ( { A }  X.  {
x } )  e. 
_V
2319, 4, 22fvmpt3i 5969 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR  ->  ( F `  y )  =  ( { A }  X.  { y } ) )
2423fveq1d 5883 . . . . . . . . . . . . . 14  |-  ( y  e.  RR  ->  (
( F `  y
) `  A )  =  ( ( { A }  X.  {
y } ) `  A ) )
2524adantr 466 . . . . . . . . . . . . 13  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( F `  y ) `  A
)  =  ( ( { A }  X.  { y } ) `
 A ) )
26 snidg 4024 . . . . . . . . . . . . . 14  |-  ( A  e.  V  ->  A  e.  { A } )
27 fvconst2g 6133 . . . . . . . . . . . . . 14  |-  ( ( y  e.  _V  /\  A  e.  { A } )  ->  (
( { A }  X.  { y } ) `
 A )  =  y )
2814, 26, 27sylancr 667 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  (
( { A }  X.  { y } ) `
 A )  =  y )
2925, 28sylan9eqr 2485 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( F `  y ) `  A )  =  y )
30 sneq 4008 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  { x }  =  { z } )
3130xpeq2d 4877 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  ( { A }  X.  {
x } )  =  ( { A }  X.  { z } ) )
3231, 4, 22fvmpt3i 5969 . . . . . . . . . . . . . . 15  |-  ( z  e.  RR  ->  ( F `  z )  =  ( { A }  X.  { z } ) )
3332fveq1d 5883 . . . . . . . . . . . . . 14  |-  ( z  e.  RR  ->  (
( F `  z
) `  A )  =  ( ( { A }  X.  {
z } ) `  A ) )
3433adantl 467 . . . . . . . . . . . . 13  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( F `  z ) `  A
)  =  ( ( { A }  X.  { z } ) `
 A ) )
35 vex 3083 . . . . . . . . . . . . . 14  |-  z  e. 
_V
36 fvconst2g 6133 . . . . . . . . . . . . . 14  |-  ( ( z  e.  _V  /\  A  e.  { A } )  ->  (
( { A }  X.  { z } ) `
 A )  =  z )
3735, 26, 36sylancr 667 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  (
( { A }  X.  { z } ) `
 A )  =  z )
3834, 37sylan9eqr 2485 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( F `  z ) `  A )  =  z )
3929, 38oveq12d 6323 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( (
( F `  y
) `  A )  -  ( ( F `
 z ) `  A ) )  =  ( y  -  z
) )
4039oveq1d 6320 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( (
( ( F `  y ) `  A
)  -  ( ( F `  z ) `
 A ) ) ^ 2 )  =  ( ( y  -  z ) ^ 2 ) )
41 resubcl 9945 . . . . . . . . . . . 12  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y  -  z
)  e.  RR )
4241adantl 467 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( y  -  z )  e.  RR )
43 absresq 13365 . . . . . . . . . . 11  |-  ( ( y  -  z )  e.  RR  ->  (
( abs `  (
y  -  z ) ) ^ 2 )  =  ( ( y  -  z ) ^
2 ) )
4442, 43syl 17 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( abs `  ( y  -  z ) ) ^
2 )  =  ( ( y  -  z
) ^ 2 ) )
4540, 44eqtr4d 2466 . . . . . . . . 9  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( (
( ( F `  y ) `  A
)  -  ( ( F `  z ) `
 A ) ) ^ 2 )  =  ( ( abs `  (
y  -  z ) ) ^ 2 ) )
4642recnd 9676 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( y  -  z )  e.  CC )
4746abscld 13497 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( abs `  ( y  -  z
) )  e.  RR )
4847recnd 9676 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( abs `  ( y  -  z
) )  e.  CC )
4948sqcld 12420 . . . . . . . . 9  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( abs `  ( y  -  z ) ) ^
2 )  e.  CC )
5045, 49eqeltrd 2507 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( (
( ( F `  y ) `  A
)  -  ( ( F `  z ) `
 A ) ) ^ 2 )  e.  CC )
51 fveq2 5881 . . . . . . . . . . 11  |-  ( k  =  A  ->  (
( F `  y
) `  k )  =  ( ( F `
 y ) `  A ) )
52 fveq2 5881 . . . . . . . . . . 11  |-  ( k  =  A  ->  (
( F `  z
) `  k )  =  ( ( F `
 z ) `  A ) )
5351, 52oveq12d 6323 . . . . . . . . . 10  |-  ( k  =  A  ->  (
( ( F `  y ) `  k
)  -  ( ( F `  z ) `
 k ) )  =  ( ( ( F `  y ) `
 A )  -  ( ( F `  z ) `  A
) ) )
5453oveq1d 6320 . . . . . . . . 9  |-  ( k  =  A  ->  (
( ( ( F `
 y ) `  k )  -  (
( F `  z
) `  k )
) ^ 2 )  =  ( ( ( ( F `  y
) `  A )  -  ( ( F `
 z ) `  A ) ) ^
2 ) )
5554sumsn 13806 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( ( ( ( F `  y ) `
 A )  -  ( ( F `  z ) `  A
) ) ^ 2 )  e.  CC )  ->  sum_ k  e.  { A }  ( (
( ( F `  y ) `  k
)  -  ( ( F `  z ) `
 k ) ) ^ 2 )  =  ( ( ( ( F `  y ) `
 A )  -  ( ( F `  z ) `  A
) ) ^ 2 ) )
5650, 55syldan 472 . . . . . . 7  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  sum_ k  e. 
{ A }  (
( ( ( F `
 y ) `  k )  -  (
( F `  z
) `  k )
) ^ 2 )  =  ( ( ( ( F `  y
) `  A )  -  ( ( F `
 z ) `  A ) ) ^
2 ) )
5756, 45eqtrd 2463 . . . . . 6  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  sum_ k  e. 
{ A }  (
( ( ( F `
 y ) `  k )  -  (
( F `  z
) `  k )
) ^ 2 )  =  ( ( abs `  ( y  -  z
) ) ^ 2 ) )
5857fveq2d 5885 . . . . 5  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( sqr ` 
sum_ k  e.  { A }  ( (
( ( F `  y ) `  k
)  -  ( ( F `  z ) `
 k ) ) ^ 2 ) )  =  ( sqr `  (
( abs `  (
y  -  z ) ) ^ 2 ) ) )
5946absge0d 13505 . . . . . 6  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  0  <_  ( abs `  ( y  -  z ) ) )
6047, 59sqrtsqd 13481 . . . . 5  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( sqr `  ( ( abs `  (
y  -  z ) ) ^ 2 ) )  =  ( abs `  ( y  -  z
) ) )
6158, 60eqtrd 2463 . . . 4  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( sqr ` 
sum_ k  e.  { A }  ( (
( ( F `  y ) `  k
)  -  ( ( F `  z ) `
 k ) ) ^ 2 ) )  =  ( abs `  (
y  -  z ) ) )
62 f1of 5831 . . . . . . . 8  |-  ( F : RR -1-1-onto-> ( RR  ^m  { A } )  ->  F : RR --> ( RR  ^m  { A } ) )
6317, 62syl 17 . . . . . . 7  |-  ( A  e.  V  ->  F : RR --> ( RR  ^m  { A } ) )
6463ffvelrnda 6037 . . . . . 6  |-  ( ( A  e.  V  /\  y  e.  RR )  ->  ( F `  y
)  e.  ( RR 
^m  { A }
) )
6563ffvelrnda 6037 . . . . . 6  |-  ( ( A  e.  V  /\  z  e.  RR )  ->  ( F `  z
)  e.  ( RR 
^m  { A }
) )
6664, 65anim12dan 845 . . . . 5  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( F `  y )  e.  ( RR  ^m  { A } )  /\  ( F `  z )  e.  ( RR  ^m  { A } ) ) )
67 snfi 7660 . . . . . 6  |-  { A }  e.  Fin
68 eqid 2422 . . . . . . 7  |-  ( RR 
^m  { A }
)  =  ( RR 
^m  { A }
)
6968rrnmval 32124 . . . . . 6  |-  ( ( { A }  e.  Fin  /\  ( F `  y )  e.  ( RR  ^m  { A } )  /\  ( F `  z )  e.  ( RR  ^m  { A } ) )  -> 
( ( F `  y ) ( Rn
`  { A }
) ( F `  z ) )  =  ( sqr `  sum_ k  e.  { A }  ( ( ( ( F `  y
) `  k )  -  ( ( F `
 z ) `  k ) ) ^
2 ) ) )
7067, 69mp3an1 1347 . . . . 5  |-  ( ( ( F `  y
)  e.  ( RR 
^m  { A }
)  /\  ( F `  z )  e.  ( RR  ^m  { A } ) )  -> 
( ( F `  y ) ( Rn
`  { A }
) ( F `  z ) )  =  ( sqr `  sum_ k  e.  { A }  ( ( ( ( F `  y
) `  k )  -  ( ( F `
 z ) `  k ) ) ^
2 ) ) )
7166, 70syl 17 . . . 4  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( F `  y )
( Rn `  { A } ) ( F `
 z ) )  =  ( sqr `  sum_ k  e.  { A }  ( ( ( ( F `  y
) `  k )  -  ( ( F `
 z ) `  k ) ) ^
2 ) ) )
72 ismrer1.1 . . . . . 6  |-  R  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
7372remetdval 21805 . . . . 5  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y R z )  =  ( abs `  ( y  -  z
) ) )
7473adantl 467 . . . 4  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( y R z )  =  ( abs `  (
y  -  z ) ) )
7561, 71, 743eqtr4rd 2474 . . 3  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( y R z )  =  ( ( F `  y ) ( Rn
`  { A }
) ( F `  z ) ) )
7675ralrimivva 2843 . 2  |-  ( A  e.  V  ->  A. y  e.  RR  A. z  e.  RR  ( y R z )  =  ( ( F `  y
) ( Rn `  { A } ) ( F `  z ) ) )
7772rexmet 21807 . . 3  |-  R  e.  ( *Met `  RR )
7868rrnmet 32125 . . . 4  |-  ( { A }  e.  Fin  ->  ( Rn `  { A } )  e.  ( Met `  ( RR 
^m  { A }
) ) )
79 metxmet 21347 . . . 4  |-  ( ( Rn `  { A } )  e.  ( Met `  ( RR 
^m  { A }
) )  ->  ( Rn `  { A }
)  e.  ( *Met `  ( RR 
^m  { A }
) ) )
8067, 78, 79mp2b 10 . . 3  |-  ( Rn
`  { A }
)  e.  ( *Met `  ( RR 
^m  { A }
) )
81 isismty 32097 . . 3  |-  ( ( R  e.  ( *Met `  RR )  /\  ( Rn `  { A } )  e.  ( *Met `  ( RR  ^m  { A } ) ) )  ->  ( F  e.  ( R  Ismty  ( Rn
`  { A }
) )  <->  ( F : RR -1-1-onto-> ( RR  ^m  { A } )  /\  A. y  e.  RR  A. z  e.  RR  ( y R z )  =  ( ( F `  y
) ( Rn `  { A } ) ( F `  z ) ) ) ) )
8277, 80, 81mp2an 676 . 2  |-  ( F  e.  ( R  Ismty  ( Rn `  { A } ) )  <->  ( F : RR -1-1-onto-> ( RR  ^m  { A } )  /\  A. y  e.  RR  A. z  e.  RR  ( y R z )  =  ( ( F `  y
) ( Rn `  { A } ) ( F `  z ) ) ) )
8317, 76, 82sylanbrc 668 1  |-  ( A  e.  V  ->  F  e.  ( R  Ismty  ( Rn
`  { A }
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1872   A.wral 2771   _Vcvv 3080   {csn 3998    |-> cmpt 4482    X. cxp 4851    |` cres 4855    o. ccom 4857   -->wf 5597   -1-1-onto->wf1o 5600   ` cfv 5601  (class class class)co 6305    ^m cmap 7483   Fincfn 7580   CCcc 9544   RRcr 9545    - cmin 9867   2c2 10666   ^cexp 12278   sqrcsqrt 13296   abscabs 13297   sum_csu 13751   *Metcxmt 18954   Metcme 18955    Ismty cismty 32094   Rncrrn 32121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-inf2 8155  ax-cnex 9602  ax-resscn 9603  ax-1cn 9604  ax-icn 9605  ax-addcl 9606  ax-addrcl 9607  ax-mulcl 9608  ax-mulrcl 9609  ax-mulcom 9610  ax-addass 9611  ax-mulass 9612  ax-distr 9613  ax-i2m1 9614  ax-1ne0 9615  ax-1rid 9616  ax-rnegex 9617  ax-rrecex 9618  ax-cnre 9619  ax-pre-lttri 9620  ax-pre-lttrn 9621  ax-pre-ltadd 9622  ax-pre-mulgt0 9623  ax-pre-sup 9624
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-int 4256  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-se 4813  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7039  df-recs 7101  df-rdg 7139  df-1o 7193  df-oadd 7197  df-er 7374  df-map 7485  df-en 7581  df-dom 7582  df-sdom 7583  df-fin 7584  df-sup 7965  df-oi 8034  df-card 8381  df-pnf 9684  df-mnf 9685  df-xr 9686  df-ltxr 9687  df-le 9688  df-sub 9869  df-neg 9870  df-div 10277  df-nn 10617  df-2 10675  df-3 10676  df-4 10677  df-n0 10877  df-z 10945  df-uz 11167  df-rp 11310  df-xadd 11417  df-ico 11648  df-fz 11792  df-fzo 11923  df-seq 12220  df-exp 12279  df-hash 12522  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-clim 13551  df-sum 13752  df-xmet 18962  df-met 18963  df-ismty 32095  df-rrn 32122
This theorem is referenced by:  reheibor  32135
  Copyright terms: Public domain W3C validator