Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismrer1 Structured version   Unicode version

Theorem ismrer1 30539
Description: An isometry between  RR and  RR ^ 1. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
ismrer1.1  |-  R  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
ismrer1.2  |-  F  =  ( x  e.  RR  |->  ( { A }  X.  { x } ) )
Assertion
Ref Expression
ismrer1  |-  ( A  e.  V  ->  F  e.  ( R  Ismty  ( Rn
`  { A }
) ) )
Distinct variable group:    x, A
Allowed substitution hints:    R( x)    F( x)    V( x)

Proof of Theorem ismrer1
Dummy variables  k 
y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 4042 . . . . . . . 8  |-  ( y  =  A  ->  { y }  =  { A } )
21xpeq1d 5031 . . . . . . 7  |-  ( y  =  A  ->  ( { y }  X.  { x } )  =  ( { A }  X.  { x }
) )
32mpteq2dv 4544 . . . . . 6  |-  ( y  =  A  ->  (
x  e.  RR  |->  ( { y }  X.  { x } ) )  =  ( x  e.  RR  |->  ( { A }  X.  {
x } ) ) )
4 ismrer1.2 . . . . . 6  |-  F  =  ( x  e.  RR  |->  ( { A }  X.  { x } ) )
53, 4syl6eqr 2516 . . . . 5  |-  ( y  =  A  ->  (
x  e.  RR  |->  ( { y }  X.  { x } ) )  =  F )
6 f1oeq1 5813 . . . . 5  |-  ( ( x  e.  RR  |->  ( { y }  X.  { x } ) )  =  F  -> 
( ( x  e.  RR  |->  ( { y }  X.  { x } ) ) : RR -1-1-onto-> ( RR  ^m  {
y } )  <->  F : RR
-1-1-onto-> ( RR  ^m  { y } ) ) )
75, 6syl 16 . . . 4  |-  ( y  =  A  ->  (
( x  e.  RR  |->  ( { y }  X.  { x } ) ) : RR -1-1-onto-> ( RR  ^m  {
y } )  <->  F : RR
-1-1-onto-> ( RR  ^m  { y } ) ) )
81oveq2d 6312 . . . . 5  |-  ( y  =  A  ->  ( RR  ^m  { y } )  =  ( RR 
^m  { A }
) )
9 f1oeq3 5815 . . . . 5  |-  ( ( RR  ^m  { y } )  =  ( RR  ^m  { A } )  ->  ( F : RR -1-1-onto-> ( RR  ^m  {
y } )  <->  F : RR
-1-1-onto-> ( RR  ^m  { A } ) ) )
108, 9syl 16 . . . 4  |-  ( y  =  A  ->  ( F : RR -1-1-onto-> ( RR  ^m  {
y } )  <->  F : RR
-1-1-onto-> ( RR  ^m  { A } ) ) )
117, 10bitrd 253 . . 3  |-  ( y  =  A  ->  (
( x  e.  RR  |->  ( { y }  X.  { x } ) ) : RR -1-1-onto-> ( RR  ^m  {
y } )  <->  F : RR
-1-1-onto-> ( RR  ^m  { A } ) ) )
12 eqid 2457 . . . 4  |-  { y }  =  { y }
13 reex 9600 . . . 4  |-  RR  e.  _V
14 vex 3112 . . . 4  |-  y  e. 
_V
15 eqid 2457 . . . 4  |-  ( x  e.  RR  |->  ( { y }  X.  {
x } ) )  =  ( x  e.  RR  |->  ( { y }  X.  { x } ) )
1612, 13, 14, 15mapsnf1o3 7486 . . 3  |-  ( x  e.  RR  |->  ( { y }  X.  {
x } ) ) : RR -1-1-onto-> ( RR  ^m  {
y } )
1711, 16vtoclg 3167 . 2  |-  ( A  e.  V  ->  F : RR -1-1-onto-> ( RR  ^m  { A } ) )
18 sneq 4042 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  { x }  =  { y } )
1918xpeq2d 5032 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  ( { A }  X.  {
x } )  =  ( { A }  X.  { y } ) )
20 snex 4697 . . . . . . . . . . . . . . . . 17  |-  { A }  e.  _V
21 snex 4697 . . . . . . . . . . . . . . . . 17  |-  { x }  e.  _V
2220, 21xpex 6603 . . . . . . . . . . . . . . . 16  |-  ( { A }  X.  {
x } )  e. 
_V
2319, 4, 22fvmpt3i 5960 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR  ->  ( F `  y )  =  ( { A }  X.  { y } ) )
2423fveq1d 5874 . . . . . . . . . . . . . 14  |-  ( y  e.  RR  ->  (
( F `  y
) `  A )  =  ( ( { A }  X.  {
y } ) `  A ) )
2524adantr 465 . . . . . . . . . . . . 13  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( F `  y ) `  A
)  =  ( ( { A }  X.  { y } ) `
 A ) )
26 snidg 4058 . . . . . . . . . . . . . 14  |-  ( A  e.  V  ->  A  e.  { A } )
27 fvconst2g 6126 . . . . . . . . . . . . . 14  |-  ( ( y  e.  _V  /\  A  e.  { A } )  ->  (
( { A }  X.  { y } ) `
 A )  =  y )
2814, 26, 27sylancr 663 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  (
( { A }  X.  { y } ) `
 A )  =  y )
2925, 28sylan9eqr 2520 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( F `  y ) `  A )  =  y )
30 sneq 4042 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  { x }  =  { z } )
3130xpeq2d 5032 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  ( { A }  X.  {
x } )  =  ( { A }  X.  { z } ) )
3231, 4, 22fvmpt3i 5960 . . . . . . . . . . . . . . 15  |-  ( z  e.  RR  ->  ( F `  z )  =  ( { A }  X.  { z } ) )
3332fveq1d 5874 . . . . . . . . . . . . . 14  |-  ( z  e.  RR  ->  (
( F `  z
) `  A )  =  ( ( { A }  X.  {
z } ) `  A ) )
3433adantl 466 . . . . . . . . . . . . 13  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( F `  z ) `  A
)  =  ( ( { A }  X.  { z } ) `
 A ) )
35 vex 3112 . . . . . . . . . . . . . 14  |-  z  e. 
_V
36 fvconst2g 6126 . . . . . . . . . . . . . 14  |-  ( ( z  e.  _V  /\  A  e.  { A } )  ->  (
( { A }  X.  { z } ) `
 A )  =  z )
3735, 26, 36sylancr 663 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  (
( { A }  X.  { z } ) `
 A )  =  z )
3834, 37sylan9eqr 2520 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( F `  z ) `  A )  =  z )
3929, 38oveq12d 6314 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( (
( F `  y
) `  A )  -  ( ( F `
 z ) `  A ) )  =  ( y  -  z
) )
4039oveq1d 6311 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( (
( ( F `  y ) `  A
)  -  ( ( F `  z ) `
 A ) ) ^ 2 )  =  ( ( y  -  z ) ^ 2 ) )
41 resubcl 9902 . . . . . . . . . . . 12  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y  -  z
)  e.  RR )
4241adantl 466 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( y  -  z )  e.  RR )
43 absresq 13147 . . . . . . . . . . 11  |-  ( ( y  -  z )  e.  RR  ->  (
( abs `  (
y  -  z ) ) ^ 2 )  =  ( ( y  -  z ) ^
2 ) )
4442, 43syl 16 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( abs `  ( y  -  z ) ) ^
2 )  =  ( ( y  -  z
) ^ 2 ) )
4540, 44eqtr4d 2501 . . . . . . . . 9  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( (
( ( F `  y ) `  A
)  -  ( ( F `  z ) `
 A ) ) ^ 2 )  =  ( ( abs `  (
y  -  z ) ) ^ 2 ) )
4642recnd 9639 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( y  -  z )  e.  CC )
4746abscld 13279 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( abs `  ( y  -  z
) )  e.  RR )
4847recnd 9639 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( abs `  ( y  -  z
) )  e.  CC )
4948sqcld 12311 . . . . . . . . 9  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( abs `  ( y  -  z ) ) ^
2 )  e.  CC )
5045, 49eqeltrd 2545 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( (
( ( F `  y ) `  A
)  -  ( ( F `  z ) `
 A ) ) ^ 2 )  e.  CC )
51 fveq2 5872 . . . . . . . . . . 11  |-  ( k  =  A  ->  (
( F `  y
) `  k )  =  ( ( F `
 y ) `  A ) )
52 fveq2 5872 . . . . . . . . . . 11  |-  ( k  =  A  ->  (
( F `  z
) `  k )  =  ( ( F `
 z ) `  A ) )
5351, 52oveq12d 6314 . . . . . . . . . 10  |-  ( k  =  A  ->  (
( ( F `  y ) `  k
)  -  ( ( F `  z ) `
 k ) )  =  ( ( ( F `  y ) `
 A )  -  ( ( F `  z ) `  A
) ) )
5453oveq1d 6311 . . . . . . . . 9  |-  ( k  =  A  ->  (
( ( ( F `
 y ) `  k )  -  (
( F `  z
) `  k )
) ^ 2 )  =  ( ( ( ( F `  y
) `  A )  -  ( ( F `
 z ) `  A ) ) ^
2 ) )
5554sumsn 13575 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( ( ( ( F `  y ) `
 A )  -  ( ( F `  z ) `  A
) ) ^ 2 )  e.  CC )  ->  sum_ k  e.  { A }  ( (
( ( F `  y ) `  k
)  -  ( ( F `  z ) `
 k ) ) ^ 2 )  =  ( ( ( ( F `  y ) `
 A )  -  ( ( F `  z ) `  A
) ) ^ 2 ) )
5650, 55syldan 470 . . . . . . 7  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  sum_ k  e. 
{ A }  (
( ( ( F `
 y ) `  k )  -  (
( F `  z
) `  k )
) ^ 2 )  =  ( ( ( ( F `  y
) `  A )  -  ( ( F `
 z ) `  A ) ) ^
2 ) )
5756, 45eqtrd 2498 . . . . . 6  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  sum_ k  e. 
{ A }  (
( ( ( F `
 y ) `  k )  -  (
( F `  z
) `  k )
) ^ 2 )  =  ( ( abs `  ( y  -  z
) ) ^ 2 ) )
5857fveq2d 5876 . . . . 5  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( sqr ` 
sum_ k  e.  { A }  ( (
( ( F `  y ) `  k
)  -  ( ( F `  z ) `
 k ) ) ^ 2 ) )  =  ( sqr `  (
( abs `  (
y  -  z ) ) ^ 2 ) ) )
5946absge0d 13287 . . . . . 6  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  0  <_  ( abs `  ( y  -  z ) ) )
6047, 59sqrtsqd 13263 . . . . 5  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( sqr `  ( ( abs `  (
y  -  z ) ) ^ 2 ) )  =  ( abs `  ( y  -  z
) ) )
6158, 60eqtrd 2498 . . . 4  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( sqr ` 
sum_ k  e.  { A }  ( (
( ( F `  y ) `  k
)  -  ( ( F `  z ) `
 k ) ) ^ 2 ) )  =  ( abs `  (
y  -  z ) ) )
62 f1of 5822 . . . . . . . 8  |-  ( F : RR -1-1-onto-> ( RR  ^m  { A } )  ->  F : RR --> ( RR  ^m  { A } ) )
6317, 62syl 16 . . . . . . 7  |-  ( A  e.  V  ->  F : RR --> ( RR  ^m  { A } ) )
6463ffvelrnda 6032 . . . . . 6  |-  ( ( A  e.  V  /\  y  e.  RR )  ->  ( F `  y
)  e.  ( RR 
^m  { A }
) )
6563ffvelrnda 6032 . . . . . 6  |-  ( ( A  e.  V  /\  z  e.  RR )  ->  ( F `  z
)  e.  ( RR 
^m  { A }
) )
6664, 65anim12dan 837 . . . . 5  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( F `  y )  e.  ( RR  ^m  { A } )  /\  ( F `  z )  e.  ( RR  ^m  { A } ) ) )
67 snfi 7615 . . . . . 6  |-  { A }  e.  Fin
68 eqid 2457 . . . . . . 7  |-  ( RR 
^m  { A }
)  =  ( RR 
^m  { A }
)
6968rrnmval 30529 . . . . . 6  |-  ( ( { A }  e.  Fin  /\  ( F `  y )  e.  ( RR  ^m  { A } )  /\  ( F `  z )  e.  ( RR  ^m  { A } ) )  -> 
( ( F `  y ) ( Rn
`  { A }
) ( F `  z ) )  =  ( sqr `  sum_ k  e.  { A }  ( ( ( ( F `  y
) `  k )  -  ( ( F `
 z ) `  k ) ) ^
2 ) ) )
7067, 69mp3an1 1311 . . . . 5  |-  ( ( ( F `  y
)  e.  ( RR 
^m  { A }
)  /\  ( F `  z )  e.  ( RR  ^m  { A } ) )  -> 
( ( F `  y ) ( Rn
`  { A }
) ( F `  z ) )  =  ( sqr `  sum_ k  e.  { A }  ( ( ( ( F `  y
) `  k )  -  ( ( F `
 z ) `  k ) ) ^
2 ) ) )
7166, 70syl 16 . . . 4  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( F `  y )
( Rn `  { A } ) ( F `
 z ) )  =  ( sqr `  sum_ k  e.  { A }  ( ( ( ( F `  y
) `  k )  -  ( ( F `
 z ) `  k ) ) ^
2 ) ) )
72 ismrer1.1 . . . . . 6  |-  R  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
7372remetdval 21420 . . . . 5  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y R z )  =  ( abs `  ( y  -  z
) ) )
7473adantl 466 . . . 4  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( y R z )  =  ( abs `  (
y  -  z ) ) )
7561, 71, 743eqtr4rd 2509 . . 3  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( y R z )  =  ( ( F `  y ) ( Rn
`  { A }
) ( F `  z ) ) )
7675ralrimivva 2878 . 2  |-  ( A  e.  V  ->  A. y  e.  RR  A. z  e.  RR  ( y R z )  =  ( ( F `  y
) ( Rn `  { A } ) ( F `  z ) ) )
7772rexmet 21422 . . 3  |-  R  e.  ( *Met `  RR )
7868rrnmet 30530 . . . 4  |-  ( { A }  e.  Fin  ->  ( Rn `  { A } )  e.  ( Met `  ( RR 
^m  { A }
) ) )
79 metxmet 20963 . . . 4  |-  ( ( Rn `  { A } )  e.  ( Met `  ( RR 
^m  { A }
) )  ->  ( Rn `  { A }
)  e.  ( *Met `  ( RR 
^m  { A }
) ) )
8067, 78, 79mp2b 10 . . 3  |-  ( Rn
`  { A }
)  e.  ( *Met `  ( RR 
^m  { A }
) )
81 isismty 30502 . . 3  |-  ( ( R  e.  ( *Met `  RR )  /\  ( Rn `  { A } )  e.  ( *Met `  ( RR  ^m  { A } ) ) )  ->  ( F  e.  ( R  Ismty  ( Rn
`  { A }
) )  <->  ( F : RR -1-1-onto-> ( RR  ^m  { A } )  /\  A. y  e.  RR  A. z  e.  RR  ( y R z )  =  ( ( F `  y
) ( Rn `  { A } ) ( F `  z ) ) ) ) )
8277, 80, 81mp2an 672 . 2  |-  ( F  e.  ( R  Ismty  ( Rn `  { A } ) )  <->  ( F : RR -1-1-onto-> ( RR  ^m  { A } )  /\  A. y  e.  RR  A. z  e.  RR  ( y R z )  =  ( ( F `  y
) ( Rn `  { A } ) ( F `  z ) ) ) )
8317, 76, 82sylanbrc 664 1  |-  ( A  e.  V  ->  F  e.  ( R  Ismty  ( Rn
`  { A }
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   _Vcvv 3109   {csn 4032    |-> cmpt 4515    X. cxp 5006    |` cres 5010    o. ccom 5012   -->wf 5590   -1-1-onto->wf1o 5593   ` cfv 5594  (class class class)co 6296    ^m cmap 7438   Fincfn 7535   CCcc 9507   RRcr 9508    - cmin 9824   2c2 10606   ^cexp 12169   sqrcsqrt 13078   abscabs 13079   sum_csu 13520   *Metcxmt 18530   Metcme 18531    Ismty cismty 30499   Rncrrn 30526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-oi 7953  df-card 8337  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-n0 10817  df-z 10886  df-uz 11107  df-rp 11246  df-xadd 11344  df-ico 11560  df-fz 11698  df-fzo 11822  df-seq 12111  df-exp 12170  df-hash 12409  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-clim 13323  df-sum 13521  df-xmet 18539  df-met 18540  df-ismty 30500  df-rrn 30527
This theorem is referenced by:  reheibor  30540
  Copyright terms: Public domain W3C validator