MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismred2 Structured version   Unicode version

Theorem ismred2 14537
Description: Properties that determine a Moore collection, using restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Hypotheses
Ref Expression
ismred2.ss  |-  ( ph  ->  C  C_  ~P X
)
ismred2.in  |-  ( (
ph  /\  s  C_  C )  ->  ( X  i^i  |^| s )  e.  C )
Assertion
Ref Expression
ismred2  |-  ( ph  ->  C  e.  (Moore `  X ) )
Distinct variable groups:    ph, s    C, s    X, s

Proof of Theorem ismred2
StepHypRef Expression
1 ismred2.ss . 2  |-  ( ph  ->  C  C_  ~P X
)
2 eqid 2441 . . . 4  |-  (/)  =  (/)
3 rint0 4165 . . . 4  |-  ( (/)  =  (/)  ->  ( X  i^i  |^| (/) )  =  X )
42, 3ax-mp 5 . . 3  |-  ( X  i^i  |^| (/) )  =  X
5 0ss 3663 . . . 4  |-  (/)  C_  C
6 0ex 4419 . . . . 5  |-  (/)  e.  _V
7 sseq1 3374 . . . . . . 7  |-  ( s  =  (/)  ->  ( s 
C_  C  <->  (/)  C_  C
) )
87anbi2d 698 . . . . . 6  |-  ( s  =  (/)  ->  ( (
ph  /\  s  C_  C )  <->  ( ph  /\  (/)  C_  C ) ) )
9 inteq 4128 . . . . . . . 8  |-  ( s  =  (/)  ->  |^| s  =  |^| (/) )
109ineq2d 3549 . . . . . . 7  |-  ( s  =  (/)  ->  ( X  i^i  |^| s )  =  ( X  i^i  |^| (/) ) )
1110eleq1d 2507 . . . . . 6  |-  ( s  =  (/)  ->  ( ( X  i^i  |^| s
)  e.  C  <->  ( X  i^i  |^| (/) )  e.  C
) )
128, 11imbi12d 320 . . . . 5  |-  ( s  =  (/)  ->  ( ( ( ph  /\  s  C_  C )  ->  ( X  i^i  |^| s )  e.  C )  <->  ( ( ph  /\  (/)  C_  C )  ->  ( X  i^i  |^| (/) )  e.  C ) ) )
13 ismred2.in . . . . 5  |-  ( (
ph  /\  s  C_  C )  ->  ( X  i^i  |^| s )  e.  C )
146, 12, 13vtocl 3021 . . . 4  |-  ( (
ph  /\  (/)  C_  C
)  ->  ( X  i^i  |^| (/) )  e.  C
)
155, 14mpan2 666 . . 3  |-  ( ph  ->  ( X  i^i  |^| (/) )  e.  C )
164, 15syl5eqelr 2526 . 2  |-  ( ph  ->  X  e.  C )
17 simp2 984 . . . . 5  |-  ( (
ph  /\  s  C_  C  /\  s  =/=  (/) )  -> 
s  C_  C )
1813ad2ant1 1004 . . . . 5  |-  ( (
ph  /\  s  C_  C  /\  s  =/=  (/) )  ->  C  C_  ~P X )
1917, 18sstrd 3363 . . . 4  |-  ( (
ph  /\  s  C_  C  /\  s  =/=  (/) )  -> 
s  C_  ~P X
)
20 simp3 985 . . . 4  |-  ( (
ph  /\  s  C_  C  /\  s  =/=  (/) )  -> 
s  =/=  (/) )
21 rintn0 4258 . . . 4  |-  ( ( s  C_  ~P X  /\  s  =/=  (/) )  -> 
( X  i^i  |^| s )  =  |^| s )
2219, 20, 21syl2anc 656 . . 3  |-  ( (
ph  /\  s  C_  C  /\  s  =/=  (/) )  -> 
( X  i^i  |^| s )  =  |^| s )
23133adant3 1003 . . 3  |-  ( (
ph  /\  s  C_  C  /\  s  =/=  (/) )  -> 
( X  i^i  |^| s )  e.  C
)
2422, 23eqeltrrd 2516 . 2  |-  ( (
ph  /\  s  C_  C  /\  s  =/=  (/) )  ->  |^| s  e.  C
)
251, 16, 24ismred 14536 1  |-  ( ph  ->  C  e.  (Moore `  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761    =/= wne 2604    i^i cin 3324    C_ wss 3325   (/)c0 3634   ~Pcpw 3857   |^|cint 4125   ` cfv 5415  Moorecmre 14516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3184  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-int 4126  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-iota 5378  df-fun 5417  df-fv 5423  df-mre 14520
This theorem is referenced by:  isacs1i  14591  mreacs  14592
  Copyright terms: Public domain W3C validator