MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismre Structured version   Unicode version

Theorem ismre 15440
Description: Property of being a Moore collection on some base set. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
ismre  |-  ( C  e.  (Moore `  X
)  <->  ( C  C_  ~P X  /\  X  e.  C  /\  A. s  e.  ~P  C ( s  =/=  (/)  ->  |^| s  e.  C ) ) )
Distinct variable groups:    C, s    X, s

Proof of Theorem ismre
Dummy variables  c  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 5899 . 2  |-  ( C  e.  (Moore `  X
)  ->  X  e.  _V )
2 elex 3087 . . 3  |-  ( X  e.  C  ->  X  e.  _V )
323ad2ant2 1027 . 2  |-  ( ( C  C_  ~P X  /\  X  e.  C  /\  A. s  e.  ~P  C ( s  =/=  (/)  ->  |^| s  e.  C
) )  ->  X  e.  _V )
4 pweq 3979 . . . . . . 7  |-  ( x  =  X  ->  ~P x  =  ~P X
)
54pweqd 3981 . . . . . 6  |-  ( x  =  X  ->  ~P ~P x  =  ~P ~P X )
6 eleq1 2492 . . . . . . 7  |-  ( x  =  X  ->  (
x  e.  c  <->  X  e.  c ) )
76anbi1d 709 . . . . . 6  |-  ( x  =  X  ->  (
( x  e.  c  /\  A. s  e. 
~P  c ( s  =/=  (/)  ->  |^| s  e.  c ) )  <->  ( X  e.  c  /\  A. s  e.  ~P  c ( s  =/=  (/)  ->  |^| s  e.  c ) ) ) )
85, 7rabeqbidv 3073 . . . . 5  |-  ( x  =  X  ->  { c  e.  ~P ~P x  |  ( x  e.  c  /\  A. s  e.  ~P  c ( s  =/=  (/)  ->  |^| s  e.  c ) ) }  =  { c  e. 
~P ~P X  | 
( X  e.  c  /\  A. s  e. 
~P  c ( s  =/=  (/)  ->  |^| s  e.  c ) ) } )
9 df-mre 15436 . . . . 5  |- Moore  =  ( x  e.  _V  |->  { c  e.  ~P ~P x  |  ( x  e.  c  /\  A. s  e.  ~P  c ( s  =/=  (/)  ->  |^| s  e.  c ) ) } )
10 vex 3081 . . . . . . . 8  |-  x  e. 
_V
1110pwex 4599 . . . . . . 7  |-  ~P x  e.  _V
1211pwex 4599 . . . . . 6  |-  ~P ~P x  e.  _V
1312rabex 4567 . . . . 5  |-  { c  e.  ~P ~P x  |  ( x  e.  c  /\  A. s  e.  ~P  c ( s  =/=  (/)  ->  |^| s  e.  c ) ) }  e.  _V
148, 9, 13fvmpt3i 5960 . . . 4  |-  ( X  e.  _V  ->  (Moore `  X )  =  {
c  e.  ~P ~P X  |  ( X  e.  c  /\  A. s  e.  ~P  c ( s  =/=  (/)  ->  |^| s  e.  c ) ) } )
1514eleq2d 2490 . . 3  |-  ( X  e.  _V  ->  ( C  e.  (Moore `  X
)  <->  C  e.  { c  e.  ~P ~P X  |  ( X  e.  c  /\  A. s  e.  ~P  c ( s  =/=  (/)  ->  |^| s  e.  c ) ) } ) )
16 eleq2 2493 . . . . . 6  |-  ( c  =  C  ->  ( X  e.  c  <->  X  e.  C ) )
17 pweq 3979 . . . . . . 7  |-  ( c  =  C  ->  ~P c  =  ~P C
)
18 eleq2 2493 . . . . . . . 8  |-  ( c  =  C  ->  ( |^| s  e.  c  <->  |^| s  e.  C ) )
1918imbi2d 317 . . . . . . 7  |-  ( c  =  C  ->  (
( s  =/=  (/)  ->  |^| s  e.  c )  <->  ( s  =/=  (/)  ->  |^| s  e.  C ) ) )
2017, 19raleqbidv 3037 . . . . . 6  |-  ( c  =  C  ->  ( A. s  e.  ~P  c ( s  =/=  (/)  ->  |^| s  e.  c )  <->  A. s  e.  ~P  C ( s  =/=  (/)  ->  |^| s  e.  C
) ) )
2116, 20anbi12d 715 . . . . 5  |-  ( c  =  C  ->  (
( X  e.  c  /\  A. s  e. 
~P  c ( s  =/=  (/)  ->  |^| s  e.  c ) )  <->  ( X  e.  C  /\  A. s  e.  ~P  C ( s  =/=  (/)  ->  |^| s  e.  C ) ) ) )
2221elrab 3226 . . . 4  |-  ( C  e.  { c  e. 
~P ~P X  | 
( X  e.  c  /\  A. s  e. 
~P  c ( s  =/=  (/)  ->  |^| s  e.  c ) ) }  <-> 
( C  e.  ~P ~P X  /\  ( X  e.  C  /\  A. s  e.  ~P  C
( s  =/=  (/)  ->  |^| s  e.  C ) ) ) )
2322a1i 11 . . 3  |-  ( X  e.  _V  ->  ( C  e.  { c  e.  ~P ~P X  | 
( X  e.  c  /\  A. s  e. 
~P  c ( s  =/=  (/)  ->  |^| s  e.  c ) ) }  <-> 
( C  e.  ~P ~P X  /\  ( X  e.  C  /\  A. s  e.  ~P  C
( s  =/=  (/)  ->  |^| s  e.  C ) ) ) ) )
24 pwexg 4600 . . . . . 6  |-  ( X  e.  _V  ->  ~P X  e.  _V )
25 elpw2g 4579 . . . . . 6  |-  ( ~P X  e.  _V  ->  ( C  e.  ~P ~P X 
<->  C  C_  ~P X
) )
2624, 25syl 17 . . . . 5  |-  ( X  e.  _V  ->  ( C  e.  ~P ~P X 
<->  C  C_  ~P X
) )
2726anbi1d 709 . . . 4  |-  ( X  e.  _V  ->  (
( C  e.  ~P ~P X  /\  ( X  e.  C  /\  A. s  e.  ~P  C
( s  =/=  (/)  ->  |^| s  e.  C ) ) )  <-> 
( C  C_  ~P X  /\  ( X  e.  C  /\  A. s  e.  ~P  C ( s  =/=  (/)  ->  |^| s  e.  C ) ) ) ) )
28 3anass 986 . . . 4  |-  ( ( C  C_  ~P X  /\  X  e.  C  /\  A. s  e.  ~P  C ( s  =/=  (/)  ->  |^| s  e.  C
) )  <->  ( C  C_ 
~P X  /\  ( X  e.  C  /\  A. s  e.  ~P  C
( s  =/=  (/)  ->  |^| s  e.  C ) ) ) )
2927, 28syl6bbr 266 . . 3  |-  ( X  e.  _V  ->  (
( C  e.  ~P ~P X  /\  ( X  e.  C  /\  A. s  e.  ~P  C
( s  =/=  (/)  ->  |^| s  e.  C ) ) )  <-> 
( C  C_  ~P X  /\  X  e.  C  /\  A. s  e.  ~P  C ( s  =/=  (/)  ->  |^| s  e.  C
) ) ) )
3015, 23, 293bitrd 282 . 2  |-  ( X  e.  _V  ->  ( C  e.  (Moore `  X
)  <->  ( C  C_  ~P X  /\  X  e.  C  /\  A. s  e.  ~P  C ( s  =/=  (/)  ->  |^| s  e.  C ) ) ) )
311, 3, 30pm5.21nii 354 1  |-  ( C  e.  (Moore `  X
)  <->  ( C  C_  ~P X  /\  X  e.  C  /\  A. s  e.  ~P  C ( s  =/=  (/)  ->  |^| s  e.  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1867    =/= wne 2616   A.wral 2773   {crab 2777   _Vcvv 3078    C_ wss 3433   (/)c0 3758   ~Pcpw 3976   |^|cint 4249   ` cfv 5592  Moorecmre 15432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-rab 2782  df-v 3080  df-sbc 3297  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-op 4000  df-uni 4214  df-br 4418  df-opab 4476  df-mpt 4477  df-id 4760  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-iota 5556  df-fun 5594  df-fv 5600  df-mre 15436
This theorem is referenced by:  mresspw  15442  mre1cl  15444  mreintcl  15445  ismred  15452
  Copyright terms: Public domain W3C validator