Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismrcd1 Structured version   Unicode version

Theorem ismrcd1 28959
Description: Any function from the subsets of a set to itself, which is extensive (satisfies mrcssid 14551), isotone (satisfies mrcss 14550), and idempotent (satisfies mrcidm 14553) has a collection of fixed points which is a Moore collection, and itself is the closure operator for that collection. This can be taken as an alternate definition for the closure operators. This is the first half, ismrcd2 28960 is the second. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
ismrcd.b  |-  ( ph  ->  B  e.  V )
ismrcd.f  |-  ( ph  ->  F : ~P B --> ~P B )
ismrcd.e  |-  ( (
ph  /\  x  C_  B
)  ->  x  C_  ( F `  x )
)
ismrcd.m  |-  ( (
ph  /\  x  C_  B  /\  y  C_  x )  ->  ( F `  y )  C_  ( F `  x )
)
ismrcd.i  |-  ( (
ph  /\  x  C_  B
)  ->  ( F `  ( F `  x
) )  =  ( F `  x ) )
Assertion
Ref Expression
ismrcd1  |-  ( ph  ->  dom  ( F  i^i  _I  )  e.  (Moore `  B ) )
Distinct variable groups:    ph, x, y   
x, B, y    x, F, y    x, V, y

Proof of Theorem ismrcd1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 inss1 3567 . . . 4  |-  ( F  i^i  _I  )  C_  F
2 dmss 5035 . . . 4  |-  ( ( F  i^i  _I  )  C_  F  ->  dom  ( F  i^i  _I  )  C_  dom  F )
31, 2ax-mp 5 . . 3  |-  dom  ( F  i^i  _I  )  C_  dom  F
4 ismrcd.f . . . 4  |-  ( ph  ->  F : ~P B --> ~P B )
5 fdm 5560 . . . 4  |-  ( F : ~P B --> ~P B  ->  dom  F  =  ~P B )
64, 5syl 16 . . 3  |-  ( ph  ->  dom  F  =  ~P B )
73, 6syl5sseq 3401 . 2  |-  ( ph  ->  dom  ( F  i^i  _I  )  C_  ~P B
)
8 ssid 3372 . . . . . . 7  |-  B  C_  B
9 ismrcd.b . . . . . . . 8  |-  ( ph  ->  B  e.  V )
10 elpwg 3865 . . . . . . . 8  |-  ( B  e.  V  ->  ( B  e.  ~P B  <->  B 
C_  B ) )
119, 10syl 16 . . . . . . 7  |-  ( ph  ->  ( B  e.  ~P B 
<->  B  C_  B )
)
128, 11mpbiri 233 . . . . . 6  |-  ( ph  ->  B  e.  ~P B
)
134, 12ffvelrnd 5841 . . . . 5  |-  ( ph  ->  ( F `  B
)  e.  ~P B
)
1413elpwid 3867 . . . 4  |-  ( ph  ->  ( F `  B
)  C_  B )
15 selpw 3864 . . . . . . 7  |-  ( x  e.  ~P B  <->  x  C_  B
)
16 ismrcd.e . . . . . . 7  |-  ( (
ph  /\  x  C_  B
)  ->  x  C_  ( F `  x )
)
1715, 16sylan2b 472 . . . . . 6  |-  ( (
ph  /\  x  e.  ~P B )  ->  x  C_  ( F `  x
) )
1817ralrimiva 2797 . . . . 5  |-  ( ph  ->  A. x  e.  ~P  B x  C_  ( F `
 x ) )
19 id 22 . . . . . . 7  |-  ( x  =  B  ->  x  =  B )
20 fveq2 5688 . . . . . . 7  |-  ( x  =  B  ->  ( F `  x )  =  ( F `  B ) )
2119, 20sseq12d 3382 . . . . . 6  |-  ( x  =  B  ->  (
x  C_  ( F `  x )  <->  B  C_  ( F `  B )
) )
2221rspcva 3068 . . . . 5  |-  ( ( B  e.  ~P B  /\  A. x  e.  ~P  B x  C_  ( F `
 x ) )  ->  B  C_  ( F `  B )
)
2312, 18, 22syl2anc 656 . . . 4  |-  ( ph  ->  B  C_  ( F `  B ) )
2414, 23eqssd 3370 . . 3  |-  ( ph  ->  ( F `  B
)  =  B )
25 ffn 5556 . . . . 5  |-  ( F : ~P B --> ~P B  ->  F  Fn  ~P B
)
264, 25syl 16 . . . 4  |-  ( ph  ->  F  Fn  ~P B
)
27 fnelfp 5903 . . . 4  |-  ( ( F  Fn  ~P B  /\  B  e.  ~P B )  ->  ( B  e.  dom  ( F  i^i  _I  )  <->  ( F `  B )  =  B ) )
2826, 12, 27syl2anc 656 . . 3  |-  ( ph  ->  ( B  e.  dom  ( F  i^i  _I  )  <->  ( F `  B )  =  B ) )
2924, 28mpbird 232 . 2  |-  ( ph  ->  B  e.  dom  ( F  i^i  _I  ) )
30 simp2 984 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  -> 
z  C_  dom  ( F  i^i  _I  ) )
3173ad2ant1 1004 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  ->  dom  ( F  i^i  _I  )  C_  ~P B )
3230, 31sstrd 3363 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  -> 
z  C_  ~P B
)
33 simp3 985 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  -> 
z  =/=  (/) )
34 intssuni2 4150 . . . . . . . . . . . 12  |-  ( ( z  C_  ~P B  /\  z  =/=  (/) )  ->  |^| z  C_  U. ~P B )
3532, 33, 34syl2anc 656 . . . . . . . . . . 11  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  ->  |^| z  C_  U. ~P B )
36 unipw 4539 . . . . . . . . . . 11  |-  U. ~P B  =  B
3735, 36syl6sseq 3399 . . . . . . . . . 10  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  ->  |^| z  C_  B )
38 intex 4445 . . . . . . . . . . . 12  |-  ( z  =/=  (/)  <->  |^| z  e.  _V )
39 elpwg 3865 . . . . . . . . . . . 12  |-  ( |^| z  e.  _V  ->  (
|^| z  e.  ~P B 
<-> 
|^| z  C_  B
) )
4038, 39sylbi 195 . . . . . . . . . . 11  |-  ( z  =/=  (/)  ->  ( |^| z  e.  ~P B  <->  |^| z  C_  B )
)
41403ad2ant3 1006 . . . . . . . . . 10  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  -> 
( |^| z  e.  ~P B 
<-> 
|^| z  C_  B
) )
4237, 41mpbird 232 . . . . . . . . 9  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  ->  |^| z  e.  ~P B )
4342adantr 462 . . . . . . . 8  |-  ( ( ( ph  /\  z  C_ 
dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  /\  x  e.  z )  ->  |^| z  e.  ~P B )
44 ismrcd.m . . . . . . . . . . . 12  |-  ( (
ph  /\  x  C_  B  /\  y  C_  x )  ->  ( F `  y )  C_  ( F `  x )
)
45443expib 1185 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  C_  B  /\  y  C_  x
)  ->  ( F `  y )  C_  ( F `  x )
) )
4645alrimiv 1690 . . . . . . . . . 10  |-  ( ph  ->  A. y ( ( x  C_  B  /\  y  C_  x )  -> 
( F `  y
)  C_  ( F `  x ) ) )
47463ad2ant1 1004 . . . . . . . . 9  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  ->  A. y ( ( x 
C_  B  /\  y  C_  x )  ->  ( F `  y )  C_  ( F `  x
) ) )
4847adantr 462 . . . . . . . 8  |-  ( ( ( ph  /\  z  C_ 
dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  /\  x  e.  z )  ->  A. y
( ( x  C_  B  /\  y  C_  x
)  ->  ( F `  y )  C_  ( F `  x )
) )
4932sselda 3353 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  C_ 
dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  /\  x  e.  z )  ->  x  e.  ~P B )
5049elpwid 3867 . . . . . . . . 9  |-  ( ( ( ph  /\  z  C_ 
dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  /\  x  e.  z )  ->  x  C_  B )
51 intss1 4140 . . . . . . . . . 10  |-  ( x  e.  z  ->  |^| z  C_  x )
5251adantl 463 . . . . . . . . 9  |-  ( ( ( ph  /\  z  C_ 
dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  /\  x  e.  z )  ->  |^| z  C_  x )
5350, 52jca 529 . . . . . . . 8  |-  ( ( ( ph  /\  z  C_ 
dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  /\  x  e.  z )  ->  (
x  C_  B  /\  |^| z  C_  x )
)
54 sseq1 3374 . . . . . . . . . . 11  |-  ( y  =  |^| z  -> 
( y  C_  x  <->  |^| z  C_  x )
)
5554anbi2d 698 . . . . . . . . . 10  |-  ( y  =  |^| z  -> 
( ( x  C_  B  /\  y  C_  x
)  <->  ( x  C_  B  /\  |^| z  C_  x
) ) )
56 fveq2 5688 . . . . . . . . . . 11  |-  ( y  =  |^| z  -> 
( F `  y
)  =  ( F `
 |^| z ) )
5756sseq1d 3380 . . . . . . . . . 10  |-  ( y  =  |^| z  -> 
( ( F `  y )  C_  ( F `  x )  <->  ( F `  |^| z
)  C_  ( F `  x ) ) )
5855, 57imbi12d 320 . . . . . . . . 9  |-  ( y  =  |^| z  -> 
( ( ( x 
C_  B  /\  y  C_  x )  ->  ( F `  y )  C_  ( F `  x
) )  <->  ( (
x  C_  B  /\  |^| z  C_  x )  ->  ( F `  |^| z )  C_  ( F `  x )
) ) )
5958spcgv 3054 . . . . . . . 8  |-  ( |^| z  e.  ~P B  ->  ( A. y ( ( x  C_  B  /\  y  C_  x )  ->  ( F `  y )  C_  ( F `  x )
)  ->  ( (
x  C_  B  /\  |^| z  C_  x )  ->  ( F `  |^| z )  C_  ( F `  x )
) ) )
6043, 48, 53, 59syl3c 61 . . . . . . 7  |-  ( ( ( ph  /\  z  C_ 
dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  /\  x  e.  z )  ->  ( F `  |^| z ) 
C_  ( F `  x ) )
6130sselda 3353 . . . . . . . 8  |-  ( ( ( ph  /\  z  C_ 
dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  /\  x  e.  z )  ->  x  e.  dom  ( F  i^i  _I  ) )
62263ad2ant1 1004 . . . . . . . . . 10  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  ->  F  Fn  ~P B
)
6362adantr 462 . . . . . . . . 9  |-  ( ( ( ph  /\  z  C_ 
dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  /\  x  e.  z )  ->  F  Fn  ~P B )
64 fnelfp 5903 . . . . . . . . 9  |-  ( ( F  Fn  ~P B  /\  x  e.  ~P B )  ->  (
x  e.  dom  ( F  i^i  _I  )  <->  ( F `  x )  =  x ) )
6563, 49, 64syl2anc 656 . . . . . . . 8  |-  ( ( ( ph  /\  z  C_ 
dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  /\  x  e.  z )  ->  (
x  e.  dom  ( F  i^i  _I  )  <->  ( F `  x )  =  x ) )
6661, 65mpbid 210 . . . . . . 7  |-  ( ( ( ph  /\  z  C_ 
dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  /\  x  e.  z )  ->  ( F `  x )  =  x )
6760, 66sseqtrd 3389 . . . . . 6  |-  ( ( ( ph  /\  z  C_ 
dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  /\  x  e.  z )  ->  ( F `  |^| z ) 
C_  x )
6867ralrimiva 2797 . . . . 5  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  ->  A. x  e.  z 
( F `  |^| z )  C_  x
)
69 ssint 4141 . . . . 5  |-  ( ( F `  |^| z
)  C_  |^| z  <->  A. x  e.  z  ( F `  |^| z )  C_  x )
7068, 69sylibr 212 . . . 4  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  -> 
( F `  |^| z )  C_  |^| z
)
71183ad2ant1 1004 . . . . 5  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  ->  A. x  e.  ~P  B x  C_  ( F `
 x ) )
72 id 22 . . . . . . 7  |-  ( x  =  |^| z  ->  x  =  |^| z )
73 fveq2 5688 . . . . . . 7  |-  ( x  =  |^| z  -> 
( F `  x
)  =  ( F `
 |^| z ) )
7472, 73sseq12d 3382 . . . . . 6  |-  ( x  =  |^| z  -> 
( x  C_  ( F `  x )  <->  |^| z  C_  ( F `  |^| z ) ) )
7574rspcva 3068 . . . . 5  |-  ( (
|^| z  e.  ~P B  /\  A. x  e. 
~P  B x  C_  ( F `  x ) )  ->  |^| z  C_  ( F `  |^| z
) )
7642, 71, 75syl2anc 656 . . . 4  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  ->  |^| z  C_  ( F `
 |^| z ) )
7770, 76eqssd 3370 . . 3  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  -> 
( F `  |^| z )  =  |^| z )
78 fnelfp 5903 . . . 4  |-  ( ( F  Fn  ~P B  /\  |^| z  e.  ~P B )  ->  ( |^| z  e.  dom  ( F  i^i  _I  )  <->  ( F `  |^| z
)  =  |^| z
) )
7962, 42, 78syl2anc 656 . . 3  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  -> 
( |^| z  e.  dom  ( F  i^i  _I  )  <->  ( F `  |^| z
)  =  |^| z
) )
8077, 79mpbird 232 . 2  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  ->  |^| z  e.  dom  ( F  i^i  _I  )
)
817, 29, 80ismred 14536 1  |-  ( ph  ->  dom  ( F  i^i  _I  )  e.  (Moore `  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960   A.wal 1362    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713   _Vcvv 2970    i^i cin 3324    C_ wss 3325   (/)c0 3634   ~Pcpw 3857   U.cuni 4088   |^|cint 4125    _I cid 4627   dom cdm 4836    Fn wfn 5410   -->wf 5411   ` cfv 5415  Moorecmre 14516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3184  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-int 4126  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-fv 5423  df-mre 14520
This theorem is referenced by:  ismrcd2  28960  istopclsd  28961  ismrc  28962
  Copyright terms: Public domain W3C validator