MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismon2 Structured version   Unicode version

Theorem ismon2 14665
Description: Write out the monomorphism property directly. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
ismon.b  |-  B  =  ( Base `  C
)
ismon.h  |-  H  =  ( Hom  `  C
)
ismon.o  |-  .x.  =  (comp `  C )
ismon.s  |-  M  =  (Mono `  C )
ismon.c  |-  ( ph  ->  C  e.  Cat )
ismon.x  |-  ( ph  ->  X  e.  B )
ismon.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
ismon2  |-  ( ph  ->  ( F  e.  ( X M Y )  <-> 
( F  e.  ( X H Y )  /\  A. z  e.  B  A. g  e.  ( z H X ) A. h  e.  ( z H X ) ( ( F ( <. z ,  X >.  .x.  Y ) g )  =  ( F ( <. z ,  X >.  .x.  Y ) h )  ->  g  =  h ) ) ) )
Distinct variable groups:    g, h, z, B    ph, g, h, z    C, g, h, z   
g, H, h, z    .x. , g, h, z    g, F, h, z    g, X, h, z    g, Y, h, z
Allowed substitution hints:    M( z, g, h)

Proof of Theorem ismon2
StepHypRef Expression
1 ismon.b . . 3  |-  B  =  ( Base `  C
)
2 ismon.h . . 3  |-  H  =  ( Hom  `  C
)
3 ismon.o . . 3  |-  .x.  =  (comp `  C )
4 ismon.s . . 3  |-  M  =  (Mono `  C )
5 ismon.c . . 3  |-  ( ph  ->  C  e.  Cat )
6 ismon.x . . 3  |-  ( ph  ->  X  e.  B )
7 ismon.y . . 3  |-  ( ph  ->  Y  e.  B )
81, 2, 3, 4, 5, 6, 7ismon 14664 . 2  |-  ( ph  ->  ( F  e.  ( X M Y )  <-> 
( F  e.  ( X H Y )  /\  A. z  e.  B  Fun  `' ( g  e.  ( z H X )  |->  ( F ( <. z ,  X >.  .x.  Y ) g ) ) ) ) )
95ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  F  e.  ( X H Y ) )  /\  (
z  e.  B  /\  g  e.  ( z H X ) ) )  ->  C  e.  Cat )
10 simprl 755 . . . . . . . 8  |-  ( ( ( ph  /\  F  e.  ( X H Y ) )  /\  (
z  e.  B  /\  g  e.  ( z H X ) ) )  ->  z  e.  B
)
116ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  F  e.  ( X H Y ) )  /\  (
z  e.  B  /\  g  e.  ( z H X ) ) )  ->  X  e.  B
)
127ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  F  e.  ( X H Y ) )  /\  (
z  e.  B  /\  g  e.  ( z H X ) ) )  ->  Y  e.  B
)
13 simprr 756 . . . . . . . 8  |-  ( ( ( ph  /\  F  e.  ( X H Y ) )  /\  (
z  e.  B  /\  g  e.  ( z H X ) ) )  ->  g  e.  ( z H X ) )
14 simplr 754 . . . . . . . 8  |-  ( ( ( ph  /\  F  e.  ( X H Y ) )  /\  (
z  e.  B  /\  g  e.  ( z H X ) ) )  ->  F  e.  ( X H Y ) )
151, 2, 3, 9, 10, 11, 12, 13, 14catcocl 14615 . . . . . . 7  |-  ( ( ( ph  /\  F  e.  ( X H Y ) )  /\  (
z  e.  B  /\  g  e.  ( z H X ) ) )  ->  ( F (
<. z ,  X >.  .x. 
Y ) g )  e.  ( z H Y ) )
1615anassrs 648 . . . . . 6  |-  ( ( ( ( ph  /\  F  e.  ( X H Y ) )  /\  z  e.  B )  /\  g  e.  (
z H X ) )  ->  ( F
( <. z ,  X >.  .x.  Y ) g )  e.  ( z H Y ) )
1716ralrimiva 2794 . . . . 5  |-  ( ( ( ph  /\  F  e.  ( X H Y ) )  /\  z  e.  B )  ->  A. g  e.  ( z H X ) ( F (
<. z ,  X >.  .x. 
Y ) g )  e.  ( z H Y ) )
18 eqid 2438 . . . . . . . 8  |-  ( g  e.  ( z H X )  |->  ( F ( <. z ,  X >.  .x.  Y ) g ) )  =  ( g  e.  ( z H X )  |->  ( F ( <. z ,  X >.  .x.  Y ) g ) )
1918fmpt 5859 . . . . . . 7  |-  ( A. g  e.  ( z H X ) ( F ( <. z ,  X >.  .x.  Y ) g )  e.  ( z H Y )  <->  ( g  e.  ( z H X )  |->  ( F (
<. z ,  X >.  .x. 
Y ) g ) ) : ( z H X ) --> ( z H Y ) )
20 df-f1 5418 . . . . . . . 8  |-  ( ( g  e.  ( z H X )  |->  ( F ( <. z ,  X >.  .x.  Y ) g ) ) : ( z H X ) -1-1-> ( z H Y )  <->  ( (
g  e.  ( z H X )  |->  ( F ( <. z ,  X >.  .x.  Y ) g ) ) : ( z H X ) --> ( z H Y )  /\  Fun  `' ( g  e.  ( z H X ) 
|->  ( F ( <.
z ,  X >.  .x. 
Y ) g ) ) ) )
2120baib 896 . . . . . . 7  |-  ( ( g  e.  ( z H X )  |->  ( F ( <. z ,  X >.  .x.  Y ) g ) ) : ( z H X ) --> ( z H Y )  ->  (
( g  e.  ( z H X ) 
|->  ( F ( <.
z ,  X >.  .x. 
Y ) g ) ) : ( z H X ) -1-1-> ( z H Y )  <->  Fun  `' ( g  e.  ( z H X )  |->  ( F (
<. z ,  X >.  .x. 
Y ) g ) ) ) )
2219, 21sylbi 195 . . . . . 6  |-  ( A. g  e.  ( z H X ) ( F ( <. z ,  X >.  .x.  Y ) g )  e.  ( z H Y )  -> 
( ( g  e.  ( z H X )  |->  ( F (
<. z ,  X >.  .x. 
Y ) g ) ) : ( z H X ) -1-1-> ( z H Y )  <->  Fun  `' ( g  e.  ( z H X )  |->  ( F (
<. z ,  X >.  .x. 
Y ) g ) ) ) )
23 oveq2 6094 . . . . . . . 8  |-  ( g  =  h  ->  ( F ( <. z ,  X >.  .x.  Y ) g )  =  ( F ( <. z ,  X >.  .x.  Y ) h ) )
2418, 23f1mpt 5969 . . . . . . 7  |-  ( ( g  e.  ( z H X )  |->  ( F ( <. z ,  X >.  .x.  Y ) g ) ) : ( z H X ) -1-1-> ( z H Y )  <->  ( A. g  e.  ( z H X ) ( F ( <. z ,  X >.  .x.  Y ) g )  e.  ( z H Y )  /\  A. g  e.  ( z H X ) A. h  e.  ( z H X ) ( ( F ( <. z ,  X >.  .x.  Y ) g )  =  ( F ( <. z ,  X >.  .x.  Y ) h )  ->  g  =  h ) ) )
2524baib 896 . . . . . 6  |-  ( A. g  e.  ( z H X ) ( F ( <. z ,  X >.  .x.  Y ) g )  e.  ( z H Y )  -> 
( ( g  e.  ( z H X )  |->  ( F (
<. z ,  X >.  .x. 
Y ) g ) ) : ( z H X ) -1-1-> ( z H Y )  <->  A. g  e.  (
z H X ) A. h  e.  ( z H X ) ( ( F (
<. z ,  X >.  .x. 
Y ) g )  =  ( F (
<. z ,  X >.  .x. 
Y ) h )  ->  g  =  h ) ) )
2622, 25bitr3d 255 . . . . 5  |-  ( A. g  e.  ( z H X ) ( F ( <. z ,  X >.  .x.  Y ) g )  e.  ( z H Y )  -> 
( Fun  `' (
g  e.  ( z H X )  |->  ( F ( <. z ,  X >.  .x.  Y ) g ) )  <->  A. g  e.  ( z H X ) A. h  e.  ( z H X ) ( ( F ( <. z ,  X >.  .x.  Y ) g )  =  ( F ( <. z ,  X >.  .x.  Y ) h )  ->  g  =  h ) ) )
2717, 26syl 16 . . . 4  |-  ( ( ( ph  /\  F  e.  ( X H Y ) )  /\  z  e.  B )  ->  ( Fun  `' ( g  e.  ( z H X )  |->  ( F (
<. z ,  X >.  .x. 
Y ) g ) )  <->  A. g  e.  ( z H X ) A. h  e.  ( z H X ) ( ( F (
<. z ,  X >.  .x. 
Y ) g )  =  ( F (
<. z ,  X >.  .x. 
Y ) h )  ->  g  =  h ) ) )
2827ralbidva 2726 . . 3  |-  ( (
ph  /\  F  e.  ( X H Y ) )  ->  ( A. z  e.  B  Fun  `' ( g  e.  ( z H X ) 
|->  ( F ( <.
z ,  X >.  .x. 
Y ) g ) )  <->  A. z  e.  B  A. g  e.  (
z H X ) A. h  e.  ( z H X ) ( ( F (
<. z ,  X >.  .x. 
Y ) g )  =  ( F (
<. z ,  X >.  .x. 
Y ) h )  ->  g  =  h ) ) )
2928pm5.32da 641 . 2  |-  ( ph  ->  ( ( F  e.  ( X H Y )  /\  A. z  e.  B  Fun  `' ( g  e.  ( z H X )  |->  ( F ( <. z ,  X >.  .x.  Y ) g ) ) )  <-> 
( F  e.  ( X H Y )  /\  A. z  e.  B  A. g  e.  ( z H X ) A. h  e.  ( z H X ) ( ( F ( <. z ,  X >.  .x.  Y ) g )  =  ( F ( <. z ,  X >.  .x.  Y ) h )  ->  g  =  h ) ) ) )
308, 29bitrd 253 1  |-  ( ph  ->  ( F  e.  ( X M Y )  <-> 
( F  e.  ( X H Y )  /\  A. z  e.  B  A. g  e.  ( z H X ) A. h  e.  ( z H X ) ( ( F ( <. z ,  X >.  .x.  Y ) g )  =  ( F ( <. z ,  X >.  .x.  Y ) h )  ->  g  =  h ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2710   <.cop 3878    e. cmpt 4345   `'ccnv 4834   Fun wfun 5407   -->wf 5409   -1-1->wf1 5410   ` cfv 5413  (class class class)co 6086   Basecbs 14166   Hom chom 14241  compcco 14242   Catccat 14594  Monocmon 14659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-1st 6572  df-2nd 6573  df-cat 14598  df-mon 14661
This theorem is referenced by:  moni  14667  sectmon  14708  fthmon  14829  setcmon  14947
  Copyright terms: Public domain W3C validator