MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismon2 Structured version   Unicode version

Theorem ismon2 15001
Description: Write out the monomorphism property directly. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
ismon.b  |-  B  =  ( Base `  C
)
ismon.h  |-  H  =  ( Hom  `  C
)
ismon.o  |-  .x.  =  (comp `  C )
ismon.s  |-  M  =  (Mono `  C )
ismon.c  |-  ( ph  ->  C  e.  Cat )
ismon.x  |-  ( ph  ->  X  e.  B )
ismon.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
ismon2  |-  ( ph  ->  ( F  e.  ( X M Y )  <-> 
( F  e.  ( X H Y )  /\  A. z  e.  B  A. g  e.  ( z H X ) A. h  e.  ( z H X ) ( ( F ( <. z ,  X >.  .x.  Y ) g )  =  ( F ( <. z ,  X >.  .x.  Y ) h )  ->  g  =  h ) ) ) )
Distinct variable groups:    g, h, z, B    ph, g, h, z    C, g, h, z   
g, H, h, z    .x. , g, h, z    g, F, h, z    g, X, h, z    g, Y, h, z
Allowed substitution hints:    M( z, g, h)

Proof of Theorem ismon2
StepHypRef Expression
1 ismon.b . . 3  |-  B  =  ( Base `  C
)
2 ismon.h . . 3  |-  H  =  ( Hom  `  C
)
3 ismon.o . . 3  |-  .x.  =  (comp `  C )
4 ismon.s . . 3  |-  M  =  (Mono `  C )
5 ismon.c . . 3  |-  ( ph  ->  C  e.  Cat )
6 ismon.x . . 3  |-  ( ph  ->  X  e.  B )
7 ismon.y . . 3  |-  ( ph  ->  Y  e.  B )
81, 2, 3, 4, 5, 6, 7ismon 15000 . 2  |-  ( ph  ->  ( F  e.  ( X M Y )  <-> 
( F  e.  ( X H Y )  /\  A. z  e.  B  Fun  `' ( g  e.  ( z H X )  |->  ( F ( <. z ,  X >.  .x.  Y ) g ) ) ) ) )
95ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  F  e.  ( X H Y ) )  /\  (
z  e.  B  /\  g  e.  ( z H X ) ) )  ->  C  e.  Cat )
10 simprl 755 . . . . . . . 8  |-  ( ( ( ph  /\  F  e.  ( X H Y ) )  /\  (
z  e.  B  /\  g  e.  ( z H X ) ) )  ->  z  e.  B
)
116ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  F  e.  ( X H Y ) )  /\  (
z  e.  B  /\  g  e.  ( z H X ) ) )  ->  X  e.  B
)
127ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  F  e.  ( X H Y ) )  /\  (
z  e.  B  /\  g  e.  ( z H X ) ) )  ->  Y  e.  B
)
13 simprr 756 . . . . . . . 8  |-  ( ( ( ph  /\  F  e.  ( X H Y ) )  /\  (
z  e.  B  /\  g  e.  ( z H X ) ) )  ->  g  e.  ( z H X ) )
14 simplr 754 . . . . . . . 8  |-  ( ( ( ph  /\  F  e.  ( X H Y ) )  /\  (
z  e.  B  /\  g  e.  ( z H X ) ) )  ->  F  e.  ( X H Y ) )
151, 2, 3, 9, 10, 11, 12, 13, 14catcocl 14954 . . . . . . 7  |-  ( ( ( ph  /\  F  e.  ( X H Y ) )  /\  (
z  e.  B  /\  g  e.  ( z H X ) ) )  ->  ( F (
<. z ,  X >.  .x. 
Y ) g )  e.  ( z H Y ) )
1615anassrs 648 . . . . . 6  |-  ( ( ( ( ph  /\  F  e.  ( X H Y ) )  /\  z  e.  B )  /\  g  e.  (
z H X ) )  ->  ( F
( <. z ,  X >.  .x.  Y ) g )  e.  ( z H Y ) )
1716ralrimiva 2855 . . . . 5  |-  ( ( ( ph  /\  F  e.  ( X H Y ) )  /\  z  e.  B )  ->  A. g  e.  ( z H X ) ( F (
<. z ,  X >.  .x. 
Y ) g )  e.  ( z H Y ) )
18 eqid 2441 . . . . . . . 8  |-  ( g  e.  ( z H X )  |->  ( F ( <. z ,  X >.  .x.  Y ) g ) )  =  ( g  e.  ( z H X )  |->  ( F ( <. z ,  X >.  .x.  Y ) g ) )
1918fmpt 6033 . . . . . . 7  |-  ( A. g  e.  ( z H X ) ( F ( <. z ,  X >.  .x.  Y ) g )  e.  ( z H Y )  <->  ( g  e.  ( z H X )  |->  ( F (
<. z ,  X >.  .x. 
Y ) g ) ) : ( z H X ) --> ( z H Y ) )
20 df-f1 5579 . . . . . . . 8  |-  ( ( g  e.  ( z H X )  |->  ( F ( <. z ,  X >.  .x.  Y ) g ) ) : ( z H X ) -1-1-> ( z H Y )  <->  ( (
g  e.  ( z H X )  |->  ( F ( <. z ,  X >.  .x.  Y ) g ) ) : ( z H X ) --> ( z H Y )  /\  Fun  `' ( g  e.  ( z H X ) 
|->  ( F ( <.
z ,  X >.  .x. 
Y ) g ) ) ) )
2120baib 901 . . . . . . 7  |-  ( ( g  e.  ( z H X )  |->  ( F ( <. z ,  X >.  .x.  Y ) g ) ) : ( z H X ) --> ( z H Y )  ->  (
( g  e.  ( z H X ) 
|->  ( F ( <.
z ,  X >.  .x. 
Y ) g ) ) : ( z H X ) -1-1-> ( z H Y )  <->  Fun  `' ( g  e.  ( z H X )  |->  ( F (
<. z ,  X >.  .x. 
Y ) g ) ) ) )
2219, 21sylbi 195 . . . . . 6  |-  ( A. g  e.  ( z H X ) ( F ( <. z ,  X >.  .x.  Y ) g )  e.  ( z H Y )  -> 
( ( g  e.  ( z H X )  |->  ( F (
<. z ,  X >.  .x. 
Y ) g ) ) : ( z H X ) -1-1-> ( z H Y )  <->  Fun  `' ( g  e.  ( z H X )  |->  ( F (
<. z ,  X >.  .x. 
Y ) g ) ) ) )
23 oveq2 6285 . . . . . . . 8  |-  ( g  =  h  ->  ( F ( <. z ,  X >.  .x.  Y ) g )  =  ( F ( <. z ,  X >.  .x.  Y ) h ) )
2418, 23f1mpt 6150 . . . . . . 7  |-  ( ( g  e.  ( z H X )  |->  ( F ( <. z ,  X >.  .x.  Y ) g ) ) : ( z H X ) -1-1-> ( z H Y )  <->  ( A. g  e.  ( z H X ) ( F ( <. z ,  X >.  .x.  Y ) g )  e.  ( z H Y )  /\  A. g  e.  ( z H X ) A. h  e.  ( z H X ) ( ( F ( <. z ,  X >.  .x.  Y ) g )  =  ( F ( <. z ,  X >.  .x.  Y ) h )  ->  g  =  h ) ) )
2524baib 901 . . . . . 6  |-  ( A. g  e.  ( z H X ) ( F ( <. z ,  X >.  .x.  Y ) g )  e.  ( z H Y )  -> 
( ( g  e.  ( z H X )  |->  ( F (
<. z ,  X >.  .x. 
Y ) g ) ) : ( z H X ) -1-1-> ( z H Y )  <->  A. g  e.  (
z H X ) A. h  e.  ( z H X ) ( ( F (
<. z ,  X >.  .x. 
Y ) g )  =  ( F (
<. z ,  X >.  .x. 
Y ) h )  ->  g  =  h ) ) )
2622, 25bitr3d 255 . . . . 5  |-  ( A. g  e.  ( z H X ) ( F ( <. z ,  X >.  .x.  Y ) g )  e.  ( z H Y )  -> 
( Fun  `' (
g  e.  ( z H X )  |->  ( F ( <. z ,  X >.  .x.  Y ) g ) )  <->  A. g  e.  ( z H X ) A. h  e.  ( z H X ) ( ( F ( <. z ,  X >.  .x.  Y ) g )  =  ( F ( <. z ,  X >.  .x.  Y ) h )  ->  g  =  h ) ) )
2717, 26syl 16 . . . 4  |-  ( ( ( ph  /\  F  e.  ( X H Y ) )  /\  z  e.  B )  ->  ( Fun  `' ( g  e.  ( z H X )  |->  ( F (
<. z ,  X >.  .x. 
Y ) g ) )  <->  A. g  e.  ( z H X ) A. h  e.  ( z H X ) ( ( F (
<. z ,  X >.  .x. 
Y ) g )  =  ( F (
<. z ,  X >.  .x. 
Y ) h )  ->  g  =  h ) ) )
2827ralbidva 2877 . . 3  |-  ( (
ph  /\  F  e.  ( X H Y ) )  ->  ( A. z  e.  B  Fun  `' ( g  e.  ( z H X ) 
|->  ( F ( <.
z ,  X >.  .x. 
Y ) g ) )  <->  A. z  e.  B  A. g  e.  (
z H X ) A. h  e.  ( z H X ) ( ( F (
<. z ,  X >.  .x. 
Y ) g )  =  ( F (
<. z ,  X >.  .x. 
Y ) h )  ->  g  =  h ) ) )
2928pm5.32da 641 . 2  |-  ( ph  ->  ( ( F  e.  ( X H Y )  /\  A. z  e.  B  Fun  `' ( g  e.  ( z H X )  |->  ( F ( <. z ,  X >.  .x.  Y ) g ) ) )  <-> 
( F  e.  ( X H Y )  /\  A. z  e.  B  A. g  e.  ( z H X ) A. h  e.  ( z H X ) ( ( F ( <. z ,  X >.  .x.  Y ) g )  =  ( F ( <. z ,  X >.  .x.  Y ) h )  ->  g  =  h ) ) ) )
308, 29bitrd 253 1  |-  ( ph  ->  ( F  e.  ( X M Y )  <-> 
( F  e.  ( X H Y )  /\  A. z  e.  B  A. g  e.  ( z H X ) A. h  e.  ( z H X ) ( ( F ( <. z ,  X >.  .x.  Y ) g )  =  ( F ( <. z ,  X >.  .x.  Y ) h )  ->  g  =  h ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1381    e. wcel 1802   A.wral 2791   <.cop 4016    |-> cmpt 4491   `'ccnv 4984   Fun wfun 5568   -->wf 5570   -1-1->wf1 5571   ` cfv 5574  (class class class)co 6277   Basecbs 14504   Hom chom 14580  compcco 14581   Catccat 14933  Monocmon 14995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-reu 2798  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-op 4017  df-uni 4231  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-id 4781  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-1st 6781  df-2nd 6782  df-cat 14937  df-mon 14997
This theorem is referenced by:  moni  15003  sectmon  15044  fthmon  15165  setcmon  15283
  Copyright terms: Public domain W3C validator