MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismndo2 Structured version   Unicode version

Theorem ismndo2 23985
Description: The predicate "is a monoid". (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
ismndo2.1  |-  X  =  ran  G
Assertion
Ref Expression
ismndo2  |-  ( G  e.  A  ->  ( G  e. MndOp  <->  ( G :
( X  X.  X
) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e.  X  A. y  e.  X  (
( x G y )  =  y  /\  ( y G x )  =  y ) ) ) )
Distinct variable groups:    x, G, y, z    x, X, y, z
Allowed substitution hints:    A( x, y, z)

Proof of Theorem ismndo2
StepHypRef Expression
1 ismndo2.1 . . . 4  |-  X  =  ran  G
2 mndomgmid 23982 . . . . 5  |-  ( G  e. MndOp  ->  G  e.  (
Magma  i^i  ExId  ) )
3 rngopid 23963 . . . . 5  |-  ( G  e.  ( Magma  i^i  ExId  )  ->  ran  G  =  dom  dom  G )
42, 3syl 16 . . . 4  |-  ( G  e. MndOp  ->  ran  G  =  dom  dom  G )
51, 4syl5eq 2507 . . 3  |-  ( G  e. MndOp  ->  X  =  dom  dom 
G )
65a1i 11 . 2  |-  ( G  e.  A  ->  ( G  e. MndOp  ->  X  =  dom  dom  G )
)
7 fdm 5672 . . . . . 6  |-  ( G : ( X  X.  X ) --> X  ->  dom  G  =  ( X  X.  X ) )
87dmeqd 5151 . . . . 5  |-  ( G : ( X  X.  X ) --> X  ->  dom  dom  G  =  dom  ( X  X.  X
) )
9 dmxpid 5168 . . . . 5  |-  dom  ( X  X.  X )  =  X
108, 9syl6req 2512 . . . 4  |-  ( G : ( X  X.  X ) --> X  ->  X  =  dom  dom  G
)
11103ad2ant1 1009 . . 3  |-  ( ( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e.  X  A. y  e.  X  ( ( x G y )  =  y  /\  ( y G x )  =  y ) )  ->  X  =  dom  dom  G
)
1211a1i 11 . 2  |-  ( G  e.  A  ->  (
( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( (
x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e.  X  A. y  e.  X  ( (
x G y )  =  y  /\  (
y G x )  =  y ) )  ->  X  =  dom  dom 
G ) )
13 eqid 2454 . . . 4  |-  dom  dom  G  =  dom  dom  G
1413ismndo1 23984 . . 3  |-  ( G  e.  A  ->  ( G  e. MndOp  <->  ( G :
( dom  dom  G  X.  dom  dom  G ) --> dom 
dom  G  /\  A. x  e.  dom  dom  G A. y  e.  dom  dom  G A. z  e.  dom  dom 
G ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e. 
dom  dom  G A. y  e.  dom  dom  G (
( x G y )  =  y  /\  ( y G x )  =  y ) ) ) )
15 xpid11 5170 . . . . . . 7  |-  ( ( X  X.  X )  =  ( dom  dom  G  X.  dom  dom  G
)  <->  X  =  dom  dom 
G )
1615biimpri 206 . . . . . 6  |-  ( X  =  dom  dom  G  ->  ( X  X.  X
)  =  ( dom 
dom  G  X.  dom  dom  G ) )
17 feq23 5654 . . . . . 6  |-  ( ( ( X  X.  X
)  =  ( dom 
dom  G  X.  dom  dom  G )  /\  X  =  dom  dom  G )  ->  ( G : ( X  X.  X ) --> X  <->  G : ( dom 
dom  G  X.  dom  dom  G ) --> dom  dom  G ) )
1816, 17mpancom 669 . . . . 5  |-  ( X  =  dom  dom  G  ->  ( G : ( X  X.  X ) --> X  <->  G : ( dom 
dom  G  X.  dom  dom  G ) --> dom  dom  G ) )
19 raleq 3023 . . . . . . 7  |-  ( X  =  dom  dom  G  ->  ( A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) )  <->  A. z  e.  dom  dom 
G ( ( x G y ) G z )  =  ( x G ( y G z ) ) ) )
2019raleqbi1dv 3031 . . . . . 6  |-  ( X  =  dom  dom  G  ->  ( A. y  e.  X  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) )  <->  A. y  e.  dom  dom 
G A. z  e. 
dom  dom  G ( ( x G y ) G z )  =  ( x G ( y G z ) ) ) )
2120raleqbi1dv 3031 . . . . 5  |-  ( X  =  dom  dom  G  ->  ( A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) )  <->  A. x  e.  dom  dom 
G A. y  e. 
dom  dom  G A. z  e.  dom  dom  G (
( x G y ) G z )  =  ( x G ( y G z ) ) ) )
22 raleq 3023 . . . . . 6  |-  ( X  =  dom  dom  G  ->  ( A. y  e.  X  ( ( x G y )  =  y  /\  ( y G x )  =  y )  <->  A. y  e.  dom  dom  G (
( x G y )  =  y  /\  ( y G x )  =  y ) ) )
2322rexeqbi1dv 3032 . . . . 5  |-  ( X  =  dom  dom  G  ->  ( E. x  e.  X  A. y  e.  X  ( ( x G y )  =  y  /\  ( y G x )  =  y )  <->  E. x  e.  dom  dom  G A. y  e.  dom  dom  G
( ( x G y )  =  y  /\  ( y G x )  =  y ) ) )
2418, 21, 233anbi123d 1290 . . . 4  |-  ( X  =  dom  dom  G  ->  ( ( G :
( X  X.  X
) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e.  X  A. y  e.  X  (
( x G y )  =  y  /\  ( y G x )  =  y ) )  <->  ( G :
( dom  dom  G  X.  dom  dom  G ) --> dom 
dom  G  /\  A. x  e.  dom  dom  G A. y  e.  dom  dom  G A. z  e.  dom  dom 
G ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e. 
dom  dom  G A. y  e.  dom  dom  G (
( x G y )  =  y  /\  ( y G x )  =  y ) ) ) )
2524bibi2d 318 . . 3  |-  ( X  =  dom  dom  G  ->  ( ( G  e. MndOp  <->  ( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e.  X  A. y  e.  X  ( ( x G y )  =  y  /\  ( y G x )  =  y ) ) )  <-> 
( G  e. MndOp  <->  ( G : ( dom  dom  G  X.  dom  dom  G
) --> dom  dom  G  /\  A. x  e.  dom  dom  G A. y  e.  dom  dom 
G A. z  e. 
dom  dom  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e.  dom  dom  G A. y  e.  dom  dom  G
( ( x G y )  =  y  /\  ( y G x )  =  y ) ) ) ) )
2614, 25syl5ibrcom 222 . 2  |-  ( G  e.  A  ->  ( X  =  dom  dom  G  ->  ( G  e. MndOp  <->  ( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e.  X  A. y  e.  X  (
( x G y )  =  y  /\  ( y G x )  =  y ) ) ) ) )
276, 12, 26pm5.21ndd 354 1  |-  ( G  e.  A  ->  ( G  e. MndOp  <->  ( G :
( X  X.  X
) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e.  X  A. y  e.  X  (
( x G y )  =  y  /\  ( y G x )  =  y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2799   E.wrex 2800    i^i cin 3436    X. cxp 4947   dom cdm 4949   ran crn 4950   -->wf 5523  (class class class)co 6201    ExId cexid 23954   Magmacmagm 23958  MndOpcmndo 23977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pr 4640  ax-un 6483
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-fo 5533  df-fv 5535  df-ov 6204  df-ass 23953  df-exid 23955  df-mgm 23959  df-sgr 23971  df-mndo 23978
This theorem is referenced by:  grpomndo  23986
  Copyright terms: Public domain W3C validator