MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismgm Structured version   Unicode version

Theorem ismgm 23812
Description: The predicate "is a magma". (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.)
Hypothesis
Ref Expression
ismgm.1  |-  X  =  dom  dom  G
Assertion
Ref Expression
ismgm  |-  ( G  e.  A  ->  ( G  e.  Magma  <->  G :
( X  X.  X
) --> X ) )

Proof of Theorem ismgm
Dummy variables  g 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 feq1 5547 . . . . 5  |-  ( g  =  G  ->  (
g : ( t  X.  t ) --> t  <-> 
G : ( t  X.  t ) --> t ) )
21exbidv 1680 . . . 4  |-  ( g  =  G  ->  ( E. t  g :
( t  X.  t
) --> t  <->  E. t  G : ( t  X.  t ) --> t ) )
3 df-mgm 23811 . . . 4  |-  Magma  =  {
g  |  E. t 
g : ( t  X.  t ) --> t }
42, 3elab2g 3113 . . 3  |-  ( G  e.  A  ->  ( G  e.  Magma  <->  E. t  G : ( t  X.  t ) --> t ) )
5 f00 5598 . . . . . . . 8  |-  ( G : ( (/)  X.  (/) ) --> (/)  <->  ( G  =  (/)  /\  ( (/) 
X.  (/) )  =  (/) ) )
6 dmeq 5045 . . . . . . . . . 10  |-  ( G  =  (/)  ->  dom  G  =  dom  (/) )
7 dmeq 5045 . . . . . . . . . . 11  |-  ( dom 
G  =  dom  (/)  ->  dom  dom 
G  =  dom  dom  (/) )
8 dm0 5058 . . . . . . . . . . . . 13  |-  dom  (/)  =  (/)
98dmeqi 5046 . . . . . . . . . . . 12  |-  dom  dom  (/)  =  dom  (/)
109, 8eqtri 2463 . . . . . . . . . . 11  |-  dom  dom  (/)  =  (/)
117, 10syl6req 2492 . . . . . . . . . 10  |-  ( dom 
G  =  dom  (/)  ->  (/)  =  dom  dom 
G )
126, 11syl 16 . . . . . . . . 9  |-  ( G  =  (/)  ->  (/)  =  dom  dom 
G )
1312adantr 465 . . . . . . . 8  |-  ( ( G  =  (/)  /\  ( (/) 
X.  (/) )  =  (/) )  ->  (/)  =  dom  dom  G )
145, 13sylbi 195 . . . . . . 7  |-  ( G : ( (/)  X.  (/) ) --> (/)  -> 
(/)  =  dom  dom  G )
15 xpeq12 4864 . . . . . . . . . 10  |-  ( ( t  =  (/)  /\  t  =  (/) )  ->  (
t  X.  t )  =  ( (/)  X.  (/) ) )
1615anidms 645 . . . . . . . . 9  |-  ( t  =  (/)  ->  ( t  X.  t )  =  ( (/)  X.  (/) ) )
17 feq23 5550 . . . . . . . . 9  |-  ( ( ( t  X.  t
)  =  ( (/)  X.  (/) )  /\  t  =  (/) )  ->  ( G : ( t  X.  t ) --> t  <->  G :
( (/)  X.  (/) ) --> (/) ) )
1816, 17mpancom 669 . . . . . . . 8  |-  ( t  =  (/)  ->  ( G : ( t  X.  t ) --> t  <->  G :
( (/)  X.  (/) ) --> (/) ) )
19 eqeq1 2449 . . . . . . . 8  |-  ( t  =  (/)  ->  ( t  =  dom  dom  G  <->  (/)  =  dom  dom  G )
)
2018, 19imbi12d 320 . . . . . . 7  |-  ( t  =  (/)  ->  ( ( G : ( t  X.  t ) --> t  ->  t  =  dom  dom 
G )  <->  ( G : ( (/)  X.  (/) ) --> (/)  -> 
(/)  =  dom  dom  G ) ) )
2114, 20mpbiri 233 . . . . . 6  |-  ( t  =  (/)  ->  ( G : ( t  X.  t ) --> t  -> 
t  =  dom  dom  G ) )
22 fdm 5568 . . . . . . . 8  |-  ( G : ( t  X.  t ) --> t  ->  dom  G  =  ( t  X.  t ) )
23 dmeq 5045 . . . . . . . 8  |-  ( dom 
G  =  ( t  X.  t )  ->  dom  dom  G  =  dom  ( t  X.  t
) )
24 df-ne 2613 . . . . . . . . . . . 12  |-  ( t  =/=  (/)  <->  -.  t  =  (/) )
25 dmxp 5063 . . . . . . . . . . . 12  |-  ( t  =/=  (/)  ->  dom  ( t  X.  t )  =  t )
2624, 25sylbir 213 . . . . . . . . . . 11  |-  ( -.  t  =  (/)  ->  dom  ( t  X.  t
)  =  t )
2726eqeq1d 2451 . . . . . . . . . 10  |-  ( -.  t  =  (/)  ->  ( dom  ( t  X.  t
)  =  dom  dom  G  <-> 
t  =  dom  dom  G ) )
2827biimpcd 224 . . . . . . . . 9  |-  ( dom  ( t  X.  t
)  =  dom  dom  G  ->  ( -.  t  =  (/)  ->  t  =  dom  dom  G ) )
2928eqcoms 2446 . . . . . . . 8  |-  ( dom 
dom  G  =  dom  ( t  X.  t
)  ->  ( -.  t  =  (/)  ->  t  =  dom  dom  G )
)
3022, 23, 293syl 20 . . . . . . 7  |-  ( G : ( t  X.  t ) --> t  -> 
( -.  t  =  (/)  ->  t  =  dom  dom 
G ) )
3130com12 31 . . . . . 6  |-  ( -.  t  =  (/)  ->  ( G : ( t  X.  t ) --> t  -> 
t  =  dom  dom  G ) )
3221, 31pm2.61i 164 . . . . 5  |-  ( G : ( t  X.  t ) --> t  -> 
t  =  dom  dom  G )
3332pm4.71ri 633 . . . 4  |-  ( G : ( t  X.  t ) --> t  <->  ( t  =  dom  dom  G  /\  G : ( t  X.  t ) --> t ) )
3433exbii 1634 . . 3  |-  ( E. t  G : ( t  X.  t ) --> t  <->  E. t ( t  =  dom  dom  G  /\  G : ( t  X.  t ) --> t ) )
354, 34syl6bb 261 . 2  |-  ( G  e.  A  ->  ( G  e.  Magma  <->  E. t
( t  =  dom  dom 
G  /\  G :
( t  X.  t
) --> t ) ) )
36 dmexg 6514 . . 3  |-  ( G  e.  A  ->  dom  G  e.  _V )
37 dmexg 6514 . . 3  |-  ( dom 
G  e.  _V  ->  dom 
dom  G  e.  _V )
38 xpeq12 4864 . . . . . . 7  |-  ( ( t  =  dom  dom  G  /\  t  =  dom  dom 
G )  ->  (
t  X.  t )  =  ( dom  dom  G  X.  dom  dom  G
) )
3938anidms 645 . . . . . 6  |-  ( t  =  dom  dom  G  ->  ( t  X.  t
)  =  ( dom 
dom  G  X.  dom  dom  G ) )
40 feq23 5550 . . . . . 6  |-  ( ( ( t  X.  t
)  =  ( dom 
dom  G  X.  dom  dom  G )  /\  t  =  dom  dom  G )  ->  ( G : ( t  X.  t ) --> t  <->  G : ( dom 
dom  G  X.  dom  dom  G ) --> dom  dom  G ) )
4139, 40mpancom 669 . . . . 5  |-  ( t  =  dom  dom  G  ->  ( G : ( t  X.  t ) --> t  <->  G : ( dom 
dom  G  X.  dom  dom  G ) --> dom  dom  G ) )
42 ismgm.1 . . . . . . . 8  |-  X  =  dom  dom  G
4342eqcomi 2447 . . . . . . 7  |-  dom  dom  G  =  X
4443, 43xpeq12i 4867 . . . . . 6  |-  ( dom 
dom  G  X.  dom  dom  G )  =  ( X  X.  X )
4544, 43feq23i 5558 . . . . 5  |-  ( G : ( dom  dom  G  X.  dom  dom  G
) --> dom  dom  G  <->  G :
( X  X.  X
) --> X )
4641, 45syl6bb 261 . . . 4  |-  ( t  =  dom  dom  G  ->  ( G : ( t  X.  t ) --> t  <->  G : ( X  X.  X ) --> X ) )
4746ceqsexgv 3097 . . 3  |-  ( dom 
dom  G  e.  _V  ->  ( E. t ( t  =  dom  dom  G  /\  G : ( t  X.  t ) --> t )  <->  G :
( X  X.  X
) --> X ) )
4836, 37, 473syl 20 . 2  |-  ( G  e.  A  ->  ( E. t ( t  =  dom  dom  G  /\  G : ( t  X.  t ) --> t )  <-> 
G : ( X  X.  X ) --> X ) )
4935, 48bitrd 253 1  |-  ( G  e.  A  ->  ( G  e.  Magma  <->  G :
( X  X.  X
) --> X ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756    =/= wne 2611   _Vcvv 2977   (/)c0 3642    X. cxp 4843   dom cdm 4845   -->wf 5419   Magmacmagm 23810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-rab 2729  df-v 2979  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-br 4298  df-opab 4356  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-fun 5425  df-fn 5426  df-f 5427  df-mgm 23811
This theorem is referenced by:  clmgm  23813  opidon  23814  issmgrp  23826
  Copyright terms: Public domain W3C validator