MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismet2 Structured version   Unicode version

Theorem ismet2 20704
Description: An extended metric is a metric exactly when it takes real values for all values of the arguments. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
ismet2  |-  ( D  e.  ( Met `  X
)  <->  ( D  e.  ( *Met `  X )  /\  D : ( X  X.  X ) --> RR ) )

Proof of Theorem ismet2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 5899 . 2  |-  ( D  e.  ( Met `  X
)  ->  X  e.  _V )
2 elfvex 5899 . . 3  |-  ( D  e.  ( *Met `  X )  ->  X  e.  _V )
32adantr 465 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  D : ( X  X.  X ) --> RR )  ->  X  e.  _V )
4 simpllr 758 . . . . . . . . . . . 12  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  D : ( X  X.  X ) --> RR )
5 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  z  e.  X )
6 simplrl 759 . . . . . . . . . . . 12  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  x  e.  X )
74, 5, 6fovrnd 6442 . . . . . . . . . . 11  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  (
z D x )  e.  RR )
8 simplrr 760 . . . . . . . . . . . 12  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  y  e.  X )
94, 5, 8fovrnd 6442 . . . . . . . . . . 11  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  (
z D y )  e.  RR )
10 rexadd 11443 . . . . . . . . . . 11  |-  ( ( ( z D x )  e.  RR  /\  ( z D y )  e.  RR )  ->  ( ( z D x ) +e ( z D y ) )  =  ( ( z D x )  +  ( z D y ) ) )
117, 9, 10syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  (
( z D x ) +e ( z D y ) )  =  ( ( z D x )  +  ( z D y ) ) )
1211breq2d 4465 . . . . . . . . 9  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  (
( x D y )  <_  ( (
z D x ) +e ( z D y ) )  <-> 
( x D y )  <_  ( (
z D x )  +  ( z D y ) ) ) )
1312ralbidva 2903 . . . . . . . 8  |-  ( ( ( X  e.  _V  /\  D : ( X  X.  X ) --> RR )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) )  <->  A. z  e.  X  ( x D y )  <_  ( (
z D x )  +  ( z D y ) ) ) )
1413anbi2d 703 . . . . . . 7  |-  ( ( ( X  e.  _V  /\  D : ( X  X.  X ) --> RR )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( ( ( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) )  <-> 
( ( ( x D y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x D y )  <_ 
( ( z D x )  +  ( z D y ) ) ) ) )
15142ralbidva 2909 . . . . . 6  |-  ( ( X  e.  _V  /\  D : ( X  X.  X ) --> RR )  ->  ( A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) )  <->  A. x  e.  X  A. y  e.  X  ( ( ( x D y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x D y )  <_ 
( ( z D x )  +  ( z D y ) ) ) ) )
16 simpr 461 . . . . . . . 8  |-  ( ( X  e.  _V  /\  D : ( X  X.  X ) --> RR )  ->  D : ( X  X.  X ) --> RR )
17 ressxr 9649 . . . . . . . 8  |-  RR  C_  RR*
18 fss 5745 . . . . . . . 8  |-  ( ( D : ( X  X.  X ) --> RR 
/\  RR  C_  RR* )  ->  D : ( X  X.  X ) --> RR* )
1916, 17, 18sylancl 662 . . . . . . 7  |-  ( ( X  e.  _V  /\  D : ( X  X.  X ) --> RR )  ->  D : ( X  X.  X ) -->
RR* )
2019biantrurd 508 . . . . . 6  |-  ( ( X  e.  _V  /\  D : ( X  X.  X ) --> RR )  ->  ( A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) )  <-> 
( D : ( X  X.  X ) -->
RR*  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) ) )
2115, 20bitr3d 255 . . . . 5  |-  ( ( X  e.  _V  /\  D : ( X  X.  X ) --> RR )  ->  ( A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x )  +  ( z D y ) ) )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) ) )
2221pm5.32da 641 . . . 4  |-  ( X  e.  _V  ->  (
( D : ( X  X.  X ) --> RR  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x )  +  ( z D y ) ) ) )  <-> 
( D : ( X  X.  X ) --> RR  /\  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) ) ) )
23 ancom 450 . . . 4  |-  ( ( D : ( X  X.  X ) --> RR 
/\  ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) )  <->  ( ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) )  /\  D : ( X  X.  X ) --> RR ) )
2422, 23syl6bb 261 . . 3  |-  ( X  e.  _V  ->  (
( D : ( X  X.  X ) --> RR  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x )  +  ( z D y ) ) ) )  <-> 
( ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) )  /\  D :
( X  X.  X
) --> RR ) ) )
25 ismet 20694 . . 3  |-  ( X  e.  _V  ->  ( D  e.  ( Met `  X )  <->  ( D : ( X  X.  X ) --> RR  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x )  +  ( z D y ) ) ) ) ) )
26 isxmet 20695 . . . 4  |-  ( X  e.  _V  ->  ( D  e.  ( *Met `  X )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) ) )
2726anbi1d 704 . . 3  |-  ( X  e.  _V  ->  (
( D  e.  ( *Met `  X
)  /\  D :
( X  X.  X
) --> RR )  <->  ( ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) )  /\  D : ( X  X.  X ) --> RR ) ) )
2824, 25, 273bitr4d 285 . 2  |-  ( X  e.  _V  ->  ( D  e.  ( Met `  X )  <->  ( D  e.  ( *Met `  X )  /\  D : ( X  X.  X ) --> RR ) ) )
291, 3, 28pm5.21nii 353 1  |-  ( D  e.  ( Met `  X
)  <->  ( D  e.  ( *Met `  X )  /\  D : ( X  X.  X ) --> RR ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2817   _Vcvv 3118    C_ wss 3481   class class class wbr 4453    X. cxp 5003   -->wf 5590   ` cfv 5594  (class class class)co 6295   RRcr 9503   0cc0 9504    + caddc 9507   RR*cxr 9639    <_ cle 9641   +ecxad 11328   *Metcxmt 18273   Metcme 18274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-mulcl 9566  ax-i2m1 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-er 7323  df-map 7434  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-xr 9644  df-xadd 11331  df-xmet 18282  df-met 18283
This theorem is referenced by:  metxmet  20705  metres2  20734  prdsmet  20741  imasf1omet  20747  xmetresbl  20808  stdbdmet  20887  isbndx  30205
  Copyright terms: Public domain W3C validator