MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbl2 Structured version   Unicode version

Theorem ismbl2 21689
Description: From ovolun 21661, it suffices to show that the measure of  x is at least the sum of the measures of  x  i^i  A and  x  \  A. (Contributed by Mario Carneiro, 15-Jun-2014.)
Assertion
Ref Expression
ismbl2  |-  ( A  e.  dom  vol  <->  ( A  C_  RR  /\  A. x  e.  ~P  RR ( ( vol* `  x
)  e.  RR  ->  ( ( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) )  <_  ( vol* `  x ) ) ) )
Distinct variable group:    x, A

Proof of Theorem ismbl2
StepHypRef Expression
1 ismbl 21688 . 2  |-  ( A  e.  dom  vol  <->  ( A  C_  RR  /\  A. x  e.  ~P  RR ( ( vol* `  x
)  e.  RR  ->  ( vol* `  x
)  =  ( ( vol* `  (
x  i^i  A )
)  +  ( vol* `  ( x  \  A ) ) ) ) ) )
2 elpwi 4019 . . . . 5  |-  ( x  e.  ~P RR  ->  x 
C_  RR )
3 simprr 756 . . . . . . . . 9  |-  ( ( A  C_  RR  /\  (
x  C_  RR  /\  ( vol* `  x )  e.  RR ) )  ->  ( vol* `  x )  e.  RR )
4 inss1 3718 . . . . . . . . . . . 12  |-  ( x  i^i  A )  C_  x
5 ovolsscl 21648 . . . . . . . . . . . 12  |-  ( ( ( x  i^i  A
)  C_  x  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  -> 
( vol* `  ( x  i^i  A ) )  e.  RR )
64, 5mp3an1 1311 . . . . . . . . . . 11  |-  ( ( x  C_  RR  /\  ( vol* `  x )  e.  RR )  -> 
( vol* `  ( x  i^i  A ) )  e.  RR )
76adantl 466 . . . . . . . . . 10  |-  ( ( A  C_  RR  /\  (
x  C_  RR  /\  ( vol* `  x )  e.  RR ) )  ->  ( vol* `  ( x  i^i  A
) )  e.  RR )
8 difss 3631 . . . . . . . . . . . 12  |-  ( x 
\  A )  C_  x
9 ovolsscl 21648 . . . . . . . . . . . 12  |-  ( ( ( x  \  A
)  C_  x  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  -> 
( vol* `  ( x  \  A ) )  e.  RR )
108, 9mp3an1 1311 . . . . . . . . . . 11  |-  ( ( x  C_  RR  /\  ( vol* `  x )  e.  RR )  -> 
( vol* `  ( x  \  A ) )  e.  RR )
1110adantl 466 . . . . . . . . . 10  |-  ( ( A  C_  RR  /\  (
x  C_  RR  /\  ( vol* `  x )  e.  RR ) )  ->  ( vol* `  ( x  \  A
) )  e.  RR )
127, 11readdcld 9622 . . . . . . . . 9  |-  ( ( A  C_  RR  /\  (
x  C_  RR  /\  ( vol* `  x )  e.  RR ) )  ->  ( ( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) )  e.  RR )
133, 12letri3d 9725 . . . . . . . 8  |-  ( ( A  C_  RR  /\  (
x  C_  RR  /\  ( vol* `  x )  e.  RR ) )  ->  ( ( vol* `  x )  =  ( ( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) )  <->  ( ( vol* `  x )  <_  ( ( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) )  /\  (
( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) )  <_  ( vol* `  x ) ) ) )
14 inundif 3905 . . . . . . . . . . 11  |-  ( ( x  i^i  A )  u.  ( x  \  A ) )  =  x
1514fveq2i 5868 . . . . . . . . . 10  |-  ( vol* `  ( (
x  i^i  A )  u.  ( x  \  A
) ) )  =  ( vol* `  x )
16 simprl 755 . . . . . . . . . . . 12  |-  ( ( A  C_  RR  /\  (
x  C_  RR  /\  ( vol* `  x )  e.  RR ) )  ->  x  C_  RR )
174, 16syl5ss 3515 . . . . . . . . . . 11  |-  ( ( A  C_  RR  /\  (
x  C_  RR  /\  ( vol* `  x )  e.  RR ) )  ->  ( x  i^i 
A )  C_  RR )
188, 16syl5ss 3515 . . . . . . . . . . 11  |-  ( ( A  C_  RR  /\  (
x  C_  RR  /\  ( vol* `  x )  e.  RR ) )  ->  ( x  \  A )  C_  RR )
19 ovolun 21661 . . . . . . . . . . 11  |-  ( ( ( ( x  i^i 
A )  C_  RR  /\  ( vol* `  ( x  i^i  A ) )  e.  RR )  /\  ( ( x 
\  A )  C_  RR  /\  ( vol* `  ( x  \  A
) )  e.  RR ) )  ->  ( vol* `  ( ( x  i^i  A )  u.  ( x  \  A ) ) )  <_  ( ( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) ) )
2017, 7, 18, 11, 19syl22anc 1229 . . . . . . . . . 10  |-  ( ( A  C_  RR  /\  (
x  C_  RR  /\  ( vol* `  x )  e.  RR ) )  ->  ( vol* `  ( ( x  i^i 
A )  u.  (
x  \  A )
) )  <_  (
( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) ) )
2115, 20syl5eqbrr 4481 . . . . . . . . 9  |-  ( ( A  C_  RR  /\  (
x  C_  RR  /\  ( vol* `  x )  e.  RR ) )  ->  ( vol* `  x )  <_  (
( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) ) )
2221biantrurd 508 . . . . . . . 8  |-  ( ( A  C_  RR  /\  (
x  C_  RR  /\  ( vol* `  x )  e.  RR ) )  ->  ( ( ( vol* `  (
x  i^i  A )
)  +  ( vol* `  ( x  \  A ) ) )  <_  ( vol* `  x )  <->  ( ( vol* `  x )  <_  ( ( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) )  /\  (
( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) )  <_  ( vol* `  x ) ) ) )
2313, 22bitr4d 256 . . . . . . 7  |-  ( ( A  C_  RR  /\  (
x  C_  RR  /\  ( vol* `  x )  e.  RR ) )  ->  ( ( vol* `  x )  =  ( ( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) )  <->  ( ( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A
) ) )  <_ 
( vol* `  x ) ) )
2423expr 615 . . . . . 6  |-  ( ( A  C_  RR  /\  x  C_  RR )  ->  (
( vol* `  x )  e.  RR  ->  ( ( vol* `  x )  =  ( ( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) )  <-> 
( ( vol* `  ( x  i^i  A
) )  +  ( vol* `  (
x  \  A )
) )  <_  ( vol* `  x ) ) ) )
2524pm5.74d 247 . . . . 5  |-  ( ( A  C_  RR  /\  x  C_  RR )  ->  (
( ( vol* `  x )  e.  RR  ->  ( vol* `  x )  =  ( ( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) ) )  <->  ( ( vol* `  x )  e.  RR  ->  ( ( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A
) ) )  <_ 
( vol* `  x ) ) ) )
262, 25sylan2 474 . . . 4  |-  ( ( A  C_  RR  /\  x  e.  ~P RR )  -> 
( ( ( vol* `  x )  e.  RR  ->  ( vol* `  x )  =  ( ( vol* `  ( x  i^i  A
) )  +  ( vol* `  (
x  \  A )
) ) )  <->  ( ( vol* `  x )  e.  RR  ->  (
( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) )  <_  ( vol* `  x ) ) ) )
2726ralbidva 2900 . . 3  |-  ( A 
C_  RR  ->  ( A. x  e.  ~P  RR ( ( vol* `  x )  e.  RR  ->  ( vol* `  x )  =  ( ( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) ) )  <->  A. x  e.  ~P  RR ( ( vol* `  x )  e.  RR  ->  ( ( vol* `  ( x  i^i  A
) )  +  ( vol* `  (
x  \  A )
) )  <_  ( vol* `  x ) ) ) )
2827pm5.32i 637 . 2  |-  ( ( A  C_  RR  /\  A. x  e.  ~P  RR ( ( vol* `  x )  e.  RR  ->  ( vol* `  x )  =  ( ( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) ) ) )  <->  ( A  C_  RR  /\  A. x  e.  ~P  RR ( ( vol* `  x
)  e.  RR  ->  ( ( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) )  <_  ( vol* `  x ) ) ) )
291, 28bitri 249 1  |-  ( A  e.  dom  vol  <->  ( A  C_  RR  /\  A. x  e.  ~P  RR ( ( vol* `  x
)  e.  RR  ->  ( ( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) )  <_  ( vol* `  x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814    \ cdif 3473    u. cun 3474    i^i cin 3475    C_ wss 3476   ~Pcpw 4010   class class class wbr 4447   dom cdm 4999   ` cfv 5587  (class class class)co 6283   RRcr 9490    + caddc 9494    <_ cle 9628   vol*covol 21625   volcvol 21626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568  ax-pre-sup 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-om 6680  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-sup 7900  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-div 10206  df-nn 10536  df-2 10593  df-3 10594  df-n0 10795  df-z 10864  df-uz 11082  df-q 11182  df-rp 11220  df-ioo 11532  df-ico 11534  df-icc 11535  df-fz 11672  df-fl 11896  df-seq 12075  df-exp 12134  df-cj 12894  df-re 12895  df-im 12896  df-sqrt 13030  df-abs 13031  df-ovol 21627  df-vol 21628
This theorem is referenced by:  nulmbl  21697  nulmbl2  21698  unmbl  21699  ioombl1  21723  uniioombl  21749  ismblfin  29648
  Copyright terms: Public domain W3C validator