MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbf3d Structured version   Unicode version

Theorem ismbf3d 21824
Description: Simplified form of ismbfd 21810. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
ismbf3d.1  |-  ( ph  ->  F : A --> RR )
ismbf3d.2  |-  ( (
ph  /\  x  e.  RR )  ->  ( `' F " ( x (,) +oo ) )  e.  dom  vol )
Assertion
Ref Expression
ismbf3d  |-  ( ph  ->  F  e. MblFn )
Distinct variable groups:    x, F    ph, x
Allowed substitution hint:    A( x)

Proof of Theorem ismbf3d
Dummy variables  v  u  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismbf3d.1 . 2  |-  ( ph  ->  F : A --> RR )
2 fimacnv 6013 . . . 4  |-  ( F : A --> RR  ->  ( `' F " RR )  =  A )
31, 2syl 16 . . 3  |-  ( ph  ->  ( `' F " RR )  =  A
)
4 imaiun 6145 . . . . 5  |-  ( `' F " U_ y  e.  NN  ( -u y (,) +oo ) )  = 
U_ y  e.  NN  ( `' F " ( -u y (,) +oo ) )
5 ioossre 11586 . . . . . . . . 9  |-  ( -u y (,) +oo )  C_  RR
65rgenw 2825 . . . . . . . 8  |-  A. y  e.  NN  ( -u y (,) +oo )  C_  RR
7 iunss 4366 . . . . . . . 8  |-  ( U_ y  e.  NN  ( -u y (,) +oo )  C_  RR  <->  A. y  e.  NN  ( -u y (,) +oo )  C_  RR )
86, 7mpbir 209 . . . . . . 7  |-  U_ y  e.  NN  ( -u y (,) +oo )  C_  RR
9 renegcl 9882 . . . . . . . . . . 11  |-  ( z  e.  RR  ->  -u z  e.  RR )
10 arch 10792 . . . . . . . . . . 11  |-  ( -u z  e.  RR  ->  E. y  e.  NN  -u z  <  y )
119, 10syl 16 . . . . . . . . . 10  |-  ( z  e.  RR  ->  E. y  e.  NN  -u z  <  y
)
12 simpl 457 . . . . . . . . . . . . 13  |-  ( ( z  e.  RR  /\  y  e.  NN )  ->  z  e.  RR )
1312biantrurd 508 . . . . . . . . . . . 12  |-  ( ( z  e.  RR  /\  y  e.  NN )  ->  ( -u y  < 
z  <->  ( z  e.  RR  /\  -u y  <  z ) ) )
14 nnre 10543 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  y  e.  RR )
15 ltnegcon1 10053 . . . . . . . . . . . . 13  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( -u z  < 
y  <->  -u y  <  z
) )
1614, 15sylan2 474 . . . . . . . . . . . 12  |-  ( ( z  e.  RR  /\  y  e.  NN )  ->  ( -u z  < 
y  <->  -u y  <  z
) )
1714adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  RR  /\  y  e.  NN )  ->  y  e.  RR )
1817renegcld 9986 . . . . . . . . . . . . . 14  |-  ( ( z  e.  RR  /\  y  e.  NN )  -> 
-u y  e.  RR )
1918rexrd 9643 . . . . . . . . . . . . 13  |-  ( ( z  e.  RR  /\  y  e.  NN )  -> 
-u y  e.  RR* )
20 elioopnf 11618 . . . . . . . . . . . . 13  |-  ( -u y  e.  RR*  ->  (
z  e.  ( -u y (,) +oo )  <->  ( z  e.  RR  /\  -u y  <  z ) ) )
2119, 20syl 16 . . . . . . . . . . . 12  |-  ( ( z  e.  RR  /\  y  e.  NN )  ->  ( z  e.  (
-u y (,) +oo ) 
<->  ( z  e.  RR  /\  -u y  <  z ) ) )
2213, 16, 213bitr4d 285 . . . . . . . . . . 11  |-  ( ( z  e.  RR  /\  y  e.  NN )  ->  ( -u z  < 
y  <->  z  e.  (
-u y (,) +oo ) ) )
2322rexbidva 2970 . . . . . . . . . 10  |-  ( z  e.  RR  ->  ( E. y  e.  NN  -u z  <  y  <->  E. y  e.  NN  z  e.  (
-u y (,) +oo ) ) )
2411, 23mpbid 210 . . . . . . . . 9  |-  ( z  e.  RR  ->  E. y  e.  NN  z  e.  (
-u y (,) +oo ) )
25 eliun 4330 . . . . . . . . 9  |-  ( z  e.  U_ y  e.  NN  ( -u y (,) +oo )  <->  E. y  e.  NN  z  e.  (
-u y (,) +oo ) )
2624, 25sylibr 212 . . . . . . . 8  |-  ( z  e.  RR  ->  z  e.  U_ y  e.  NN  ( -u y (,) +oo ) )
2726ssriv 3508 . . . . . . 7  |-  RR  C_  U_ y  e.  NN  ( -u y (,) +oo )
288, 27eqssi 3520 . . . . . 6  |-  U_ y  e.  NN  ( -u y (,) +oo )  =  RR
2928imaeq2i 5335 . . . . 5  |-  ( `' F " U_ y  e.  NN  ( -u y (,) +oo ) )  =  ( `' F " RR )
304, 29eqtr3i 2498 . . . 4  |-  U_ y  e.  NN  ( `' F " ( -u y (,) +oo ) )  =  ( `' F " RR )
31 ismbf3d.2 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( `' F " ( x (,) +oo ) )  e.  dom  vol )
3231ralrimiva 2878 . . . . . . 7  |-  ( ph  ->  A. x  e.  RR  ( `' F " ( x (,) +oo ) )  e.  dom  vol )
3314renegcld 9986 . . . . . . 7  |-  ( y  e.  NN  ->  -u y  e.  RR )
34 oveq1 6291 . . . . . . . . . 10  |-  ( x  =  -u y  ->  (
x (,) +oo )  =  ( -u y (,) +oo ) )
3534imaeq2d 5337 . . . . . . . . 9  |-  ( x  =  -u y  ->  ( `' F " ( x (,) +oo ) )  =  ( `' F " ( -u y (,) +oo ) ) )
3635eleq1d 2536 . . . . . . . 8  |-  ( x  =  -u y  ->  (
( `' F "
( x (,) +oo ) )  e.  dom  vol  <->  ( `' F " ( -u y (,) +oo ) )  e.  dom  vol )
)
3736rspccva 3213 . . . . . . 7  |-  ( ( A. x  e.  RR  ( `' F " ( x (,) +oo ) )  e.  dom  vol  /\  -u y  e.  RR )  ->  ( `' F " ( -u y (,) +oo ) )  e.  dom  vol )
3832, 33, 37syl2an 477 . . . . . 6  |-  ( (
ph  /\  y  e.  NN )  ->  ( `' F " ( -u y (,) +oo ) )  e.  dom  vol )
3938ralrimiva 2878 . . . . 5  |-  ( ph  ->  A. y  e.  NN  ( `' F " ( -u y (,) +oo ) )  e.  dom  vol )
40 iunmbl 21726 . . . . 5  |-  ( A. y  e.  NN  ( `' F " ( -u y (,) +oo ) )  e.  dom  vol  ->  U_ y  e.  NN  ( `' F " ( -u y (,) +oo ) )  e.  dom  vol )
4139, 40syl 16 . . . 4  |-  ( ph  ->  U_ y  e.  NN  ( `' F " ( -u y (,) +oo ) )  e.  dom  vol )
4230, 41syl5eqelr 2560 . . 3  |-  ( ph  ->  ( `' F " RR )  e.  dom  vol )
433, 42eqeltrrd 2556 . 2  |-  ( ph  ->  A  e.  dom  vol )
44 imaiun 6145 . . . . . . 7  |-  ( `' F " U_ y  e.  NN  ( -oo (,] ( z  -  (
1  /  y ) ) ) )  = 
U_ y  e.  NN  ( `' F " ( -oo (,] ( z  -  (
1  /  y ) ) ) )
45 eliun 4330 . . . . . . . . . 10  |-  ( x  e.  U_ y  e.  NN  ( -oo (,] ( z  -  (
1  /  y ) ) )  <->  E. y  e.  NN  x  e.  ( -oo (,] ( z  -  ( 1  / 
y ) ) ) )
46 3simpb 994 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\ -oo 
<  x  /\  x  <_  ( z  -  (
1  /  y ) ) )  ->  (
x  e.  RR  /\  x  <_  ( z  -  ( 1  /  y
) ) ) )
47 simplr 754 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
y  e.  NN  /\  x  e.  RR )
)  ->  z  e.  RR )
48 nnrp 11229 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  NN  ->  y  e.  RR+ )
4948ad2antrl 727 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
y  e.  NN  /\  x  e.  RR )
)  ->  y  e.  RR+ )
5049rpreccld 11266 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
y  e.  NN  /\  x  e.  RR )
)  ->  ( 1  /  y )  e.  RR+ )
5147, 50ltsubrpd 11284 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
y  e.  NN  /\  x  e.  RR )
)  ->  ( z  -  ( 1  / 
y ) )  < 
z )
52 simprr 756 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
y  e.  NN  /\  x  e.  RR )
)  ->  x  e.  RR )
53 simpr 461 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  z  e.  RR )  ->  z  e.  RR )
54 nnrecre 10572 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  NN  ->  (
1  /  y )  e.  RR )
55 resubcl 9883 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( z  e.  RR  /\  ( 1  /  y
)  e.  RR )  ->  ( z  -  ( 1  /  y
) )  e.  RR )
5653, 54, 55syl2an 477 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
z  -  ( 1  /  y ) )  e.  RR )
5756adantrr 716 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
y  e.  NN  /\  x  e.  RR )
)  ->  ( z  -  ( 1  / 
y ) )  e.  RR )
58 lelttr 9675 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  RR  /\  ( z  -  (
1  /  y ) )  e.  RR  /\  z  e.  RR )  ->  ( ( x  <_ 
( z  -  (
1  /  y ) )  /\  ( z  -  ( 1  / 
y ) )  < 
z )  ->  x  <  z ) )
5952, 57, 47, 58syl3anc 1228 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
y  e.  NN  /\  x  e.  RR )
)  ->  ( (
x  <_  ( z  -  ( 1  / 
y ) )  /\  ( z  -  (
1  /  y ) )  <  z )  ->  x  <  z
) )
6051, 59mpan2d 674 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
y  e.  NN  /\  x  e.  RR )
)  ->  ( x  <_  ( z  -  (
1  /  y ) )  ->  x  <  z ) )
6160anassrs 648 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  /\  x  e.  RR )  ->  ( x  <_ 
( z  -  (
1  /  y ) )  ->  x  <  z ) )
6261imdistanda 693 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
( x  e.  RR  /\  x  <_  ( z  -  ( 1  / 
y ) ) )  ->  ( x  e.  RR  /\  x  < 
z ) ) )
6346, 62syl5 32 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
( x  e.  RR  /\ -oo  <  x  /\  x  <_  ( z  -  (
1  /  y ) ) )  ->  (
x  e.  RR  /\  x  <  z ) ) )
64 mnfxr 11323 . . . . . . . . . . . . . . . 16  |- -oo  e.  RR*
65 elioc2 11587 . . . . . . . . . . . . . . . 16  |-  ( ( -oo  e.  RR*  /\  (
z  -  ( 1  /  y ) )  e.  RR )  -> 
( x  e.  ( -oo (,] ( z  -  ( 1  / 
y ) ) )  <-> 
( x  e.  RR  /\ -oo  <  x  /\  x  <_  ( z  -  (
1  /  y ) ) ) ) )
6664, 56, 65sylancr 663 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
x  e.  ( -oo (,] ( z  -  (
1  /  y ) ) )  <->  ( x  e.  RR  /\ -oo  <  x  /\  x  <_  (
z  -  ( 1  /  y ) ) ) ) )
67 rexr 9639 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  RR  ->  z  e.  RR* )
6867adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  z  e.  RR )  ->  z  e. 
RR* )
69 elioomnf 11619 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  RR*  ->  ( x  e.  ( -oo (,) z )  <->  ( x  e.  RR  /\  x  < 
z ) ) )
7068, 69syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  z  e.  RR )  ->  ( x  e.  ( -oo (,) z )  <->  ( x  e.  RR  /\  x  < 
z ) ) )
7170adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
x  e.  ( -oo (,) z )  <->  ( x  e.  RR  /\  x  < 
z ) ) )
7263, 66, 713imtr4d 268 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
x  e.  ( -oo (,] ( z  -  (
1  /  y ) ) )  ->  x  e.  ( -oo (,) z
) ) )
7372rexlimdva 2955 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  RR )  ->  ( E. y  e.  NN  x  e.  ( -oo (,] (
z  -  ( 1  /  y ) ) )  ->  x  e.  ( -oo (,) z ) ) )
7473, 70sylibd 214 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  RR )  ->  ( E. y  e.  NN  x  e.  ( -oo (,] (
z  -  ( 1  /  y ) ) )  ->  ( x  e.  RR  /\  x  < 
z ) ) )
75 simplr 754 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
x  e.  RR  /\  x  <  z ) )  ->  z  e.  RR )
76 simprl 755 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
x  e.  RR  /\  x  <  z ) )  ->  x  e.  RR )
7775, 76resubcld 9987 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
x  e.  RR  /\  x  <  z ) )  ->  ( z  -  x )  e.  RR )
78 simprr 756 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
x  e.  RR  /\  x  <  z ) )  ->  x  <  z
)
7976, 75posdifd 10139 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
x  e.  RR  /\  x  <  z ) )  ->  ( x  < 
z  <->  0  <  (
z  -  x ) ) )
8078, 79mpbid 210 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
x  e.  RR  /\  x  <  z ) )  ->  0  <  (
z  -  x ) )
81 nnrecl 10793 . . . . . . . . . . . . . . 15  |-  ( ( ( z  -  x
)  e.  RR  /\  0  <  ( z  -  x ) )  ->  E. y  e.  NN  ( 1  /  y
)  <  ( z  -  x ) )
8277, 80, 81syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
x  e.  RR  /\  x  <  z ) )  ->  E. y  e.  NN  ( 1  /  y
)  <  ( z  -  x ) )
8376adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  ( x  e.  RR  /\  x  <  z ) )  /\  ( y  e.  NN  /\  (
1  /  y )  <  ( z  -  x ) ) )  ->  x  e.  RR )
84 mnflt 11333 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  RR  -> -oo  <  x )
8583, 84syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  ( x  e.  RR  /\  x  <  z ) )  /\  ( y  e.  NN  /\  (
1  /  y )  <  ( z  -  x ) ) )  -> -oo  <  x )
8656ad2ant2r 746 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  ( x  e.  RR  /\  x  <  z ) )  /\  ( y  e.  NN  /\  (
1  /  y )  <  ( z  -  x ) ) )  ->  ( z  -  ( 1  /  y
) )  e.  RR )
8754ad2antrl 727 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  ( x  e.  RR  /\  x  <  z ) )  /\  ( y  e.  NN  /\  (
1  /  y )  <  ( z  -  x ) ) )  ->  ( 1  / 
y )  e.  RR )
8875adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  ( x  e.  RR  /\  x  <  z ) )  /\  ( y  e.  NN  /\  (
1  /  y )  <  ( z  -  x ) ) )  ->  z  e.  RR )
89 simprr 756 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  ( x  e.  RR  /\  x  <  z ) )  /\  ( y  e.  NN  /\  (
1  /  y )  <  ( z  -  x ) ) )  ->  ( 1  / 
y )  <  (
z  -  x ) )
9087, 88, 83, 89ltsub13d 10158 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  ( x  e.  RR  /\  x  <  z ) )  /\  ( y  e.  NN  /\  (
1  /  y )  <  ( z  -  x ) ) )  ->  x  <  (
z  -  ( 1  /  y ) ) )
9183, 86, 90ltled 9732 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  ( x  e.  RR  /\  x  <  z ) )  /\  ( y  e.  NN  /\  (
1  /  y )  <  ( z  -  x ) ) )  ->  x  <_  (
z  -  ( 1  /  y ) ) )
9266ad2ant2r 746 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  ( x  e.  RR  /\  x  <  z ) )  /\  ( y  e.  NN  /\  (
1  /  y )  <  ( z  -  x ) ) )  ->  ( x  e.  ( -oo (,] (
z  -  ( 1  /  y ) ) )  <->  ( x  e.  RR  /\ -oo  <  x  /\  x  <_  (
z  -  ( 1  /  y ) ) ) ) )
9383, 85, 91, 92mpbir3and 1179 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  ( x  e.  RR  /\  x  <  z ) )  /\  ( y  e.  NN  /\  (
1  /  y )  <  ( z  -  x ) ) )  ->  x  e.  ( -oo (,] ( z  -  ( 1  / 
y ) ) ) )
9493expr 615 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  z  e.  RR )  /\  ( x  e.  RR  /\  x  <  z ) )  /\  y  e.  NN )  ->  (
( 1  /  y
)  <  ( z  -  x )  ->  x  e.  ( -oo (,] (
z  -  ( 1  /  y ) ) ) ) )
9594reximdva 2938 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
x  e.  RR  /\  x  <  z ) )  ->  ( E. y  e.  NN  ( 1  / 
y )  <  (
z  -  x )  ->  E. y  e.  NN  x  e.  ( -oo (,] ( z  -  (
1  /  y ) ) ) ) )
9682, 95mpd 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  RR )  /\  (
x  e.  RR  /\  x  <  z ) )  ->  E. y  e.  NN  x  e.  ( -oo (,] ( z  -  (
1  /  y ) ) ) )
9796ex 434 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  RR )  ->  ( ( x  e.  RR  /\  x  <  z )  ->  E. y  e.  NN  x  e.  ( -oo (,] ( z  -  (
1  /  y ) ) ) ) )
9874, 97impbid 191 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  RR )  ->  ( E. y  e.  NN  x  e.  ( -oo (,] (
z  -  ( 1  /  y ) ) )  <->  ( x  e.  RR  /\  x  < 
z ) ) )
9998, 70bitr4d 256 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  RR )  ->  ( E. y  e.  NN  x  e.  ( -oo (,] (
z  -  ( 1  /  y ) ) )  <->  x  e.  ( -oo (,) z ) ) )
10045, 99syl5bb 257 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  RR )  ->  ( x  e.  U_ y  e.  NN  ( -oo (,] ( z  -  (
1  /  y ) ) )  <->  x  e.  ( -oo (,) z ) ) )
101100eqrdv 2464 . . . . . . . 8  |-  ( (
ph  /\  z  e.  RR )  ->  U_ y  e.  NN  ( -oo (,] ( z  -  (
1  /  y ) ) )  =  ( -oo (,) z ) )
102101imaeq2d 5337 . . . . . . 7  |-  ( (
ph  /\  z  e.  RR )  ->  ( `' F " U_ y  e.  NN  ( -oo (,] ( z  -  (
1  /  y ) ) ) )  =  ( `' F "
( -oo (,) z ) ) )
10344, 102syl5eqr 2522 . . . . . 6  |-  ( (
ph  /\  z  e.  RR )  ->  U_ y  e.  NN  ( `' F " ( -oo (,] (
z  -  ( 1  /  y ) ) ) )  =  ( `' F " ( -oo (,) z ) ) )
1041ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  F : A --> RR )
105 ffun 5733 . . . . . . . . . . 11  |-  ( F : A --> RR  ->  Fun 
F )
106 funcnvcnv 5646 . . . . . . . . . . 11  |-  ( Fun 
F  ->  Fun  `' `' F )
107 imadif 5663 . . . . . . . . . . 11  |-  ( Fun  `' `' F  ->  ( `' F " ( RR 
\  ( ( z  -  ( 1  / 
y ) ) (,) +oo ) ) )  =  ( ( `' F " RR )  \  ( `' F " ( ( z  -  ( 1  /  y ) ) (,) +oo ) ) ) )
108104, 105, 106, 1074syl 21 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  ( `' F " ( RR 
\  ( ( z  -  ( 1  / 
y ) ) (,) +oo ) ) )  =  ( ( `' F " RR )  \  ( `' F " ( ( z  -  ( 1  /  y ) ) (,) +oo ) ) ) )
10964a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  -> -oo  e.  RR* )
11056rexrd 9643 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
z  -  ( 1  /  y ) )  e.  RR* )
111 pnfxr 11321 . . . . . . . . . . . . . . 15  |- +oo  e.  RR*
112111a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  -> +oo  e.  RR* )
113 mnflt 11333 . . . . . . . . . . . . . . 15  |-  ( ( z  -  ( 1  /  y ) )  e.  RR  -> -oo  <  ( z  -  ( 1  /  y ) ) )
11456, 113syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  -> -oo  <  ( z  -  ( 1  /  y ) ) )
115 ltpnf 11331 . . . . . . . . . . . . . . 15  |-  ( ( z  -  ( 1  /  y ) )  e.  RR  ->  (
z  -  ( 1  /  y ) )  < +oo )
11656, 115syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
z  -  ( 1  /  y ) )  < +oo )
117 df-ioc 11534 . . . . . . . . . . . . . . 15  |-  (,]  =  ( u  e.  RR* ,  v  e.  RR*  |->  { w  e.  RR*  |  ( u  <  w  /\  w  <_  v ) } )
118 df-ioo 11533 . . . . . . . . . . . . . . 15  |-  (,)  =  ( u  e.  RR* ,  v  e.  RR*  |->  { w  e.  RR*  |  ( u  <  w  /\  w  <  v ) } )
119 xrltnle 9653 . . . . . . . . . . . . . . 15  |-  ( ( ( z  -  (
1  /  y ) )  e.  RR*  /\  x  e.  RR* )  ->  (
( z  -  (
1  /  y ) )  <  x  <->  -.  x  <_  ( z  -  (
1  /  y ) ) ) )
120 xrlelttr 11359 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR*  /\  (
z  -  ( 1  /  y ) )  e.  RR*  /\ +oo  e.  RR* )  ->  ( (
x  <_  ( z  -  ( 1  / 
y ) )  /\  ( z  -  (
1  /  y ) )  < +oo )  ->  x  < +oo )
)
121 xrlttr 11346 . . . . . . . . . . . . . . 15  |-  ( ( -oo  e.  RR*  /\  (
z  -  ( 1  /  y ) )  e.  RR*  /\  x  e.  RR* )  ->  (
( -oo  <  ( z  -  ( 1  / 
y ) )  /\  ( z  -  (
1  /  y ) )  <  x )  -> -oo  <  x ) )
122117, 118, 119, 118, 120, 121ixxun 11545 . . . . . . . . . . . . . 14  |-  ( ( ( -oo  e.  RR*  /\  ( z  -  (
1  /  y ) )  e.  RR*  /\ +oo  e.  RR* )  /\  ( -oo  <  ( z  -  ( 1  /  y
) )  /\  (
z  -  ( 1  /  y ) )  < +oo ) )  -> 
( ( -oo (,] ( z  -  (
1  /  y ) ) )  u.  (
( z  -  (
1  /  y ) ) (,) +oo )
)  =  ( -oo (,) +oo ) )
123109, 110, 112, 114, 116, 122syl32anc 1236 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
( -oo (,] ( z  -  ( 1  / 
y ) ) )  u.  ( ( z  -  ( 1  / 
y ) ) (,) +oo ) )  =  ( -oo (,) +oo )
)
124 uncom 3648 . . . . . . . . . . . . 13  |-  ( ( -oo (,] ( z  -  ( 1  / 
y ) ) )  u.  ( ( z  -  ( 1  / 
y ) ) (,) +oo ) )  =  ( ( ( z  -  ( 1  /  y
) ) (,) +oo )  u.  ( -oo (,] ( z  -  (
1  /  y ) ) ) )
125 ioomax 11599 . . . . . . . . . . . . 13  |-  ( -oo (,) +oo )  =  RR
126123, 124, 1253eqtr3g 2531 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
( ( z  -  ( 1  /  y
) ) (,) +oo )  u.  ( -oo (,] ( z  -  (
1  /  y ) ) ) )  =  RR )
127 ioossre 11586 . . . . . . . . . . . . 13  |-  ( ( z  -  ( 1  /  y ) ) (,) +oo )  C_  RR
128 incom 3691 . . . . . . . . . . . . . 14  |-  ( ( ( z  -  (
1  /  y ) ) (,) +oo )  i^i  ( -oo (,] (
z  -  ( 1  /  y ) ) ) )  =  ( ( -oo (,] (
z  -  ( 1  /  y ) ) )  i^i  ( ( z  -  ( 1  /  y ) ) (,) +oo ) )
129117, 118, 119ixxdisj 11544 . . . . . . . . . . . . . . . 16  |-  ( ( -oo  e.  RR*  /\  (
z  -  ( 1  /  y ) )  e.  RR*  /\ +oo  e.  RR* )  ->  ( ( -oo (,] ( z  -  ( 1  /  y
) ) )  i^i  ( ( z  -  ( 1  /  y
) ) (,) +oo ) )  =  (/) )
13064, 111, 129mp3an13 1315 . . . . . . . . . . . . . . 15  |-  ( ( z  -  ( 1  /  y ) )  e.  RR*  ->  ( ( -oo (,] ( z  -  ( 1  / 
y ) ) )  i^i  ( ( z  -  ( 1  / 
y ) ) (,) +oo ) )  =  (/) )
131110, 130syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
( -oo (,] ( z  -  ( 1  / 
y ) ) )  i^i  ( ( z  -  ( 1  / 
y ) ) (,) +oo ) )  =  (/) )
132128, 131syl5eq 2520 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
( ( z  -  ( 1  /  y
) ) (,) +oo )  i^i  ( -oo (,] ( z  -  (
1  /  y ) ) ) )  =  (/) )
133 uneqdifeq 3915 . . . . . . . . . . . . 13  |-  ( ( ( ( z  -  ( 1  /  y
) ) (,) +oo )  C_  RR  /\  (
( ( z  -  ( 1  /  y
) ) (,) +oo )  i^i  ( -oo (,] ( z  -  (
1  /  y ) ) ) )  =  (/) )  ->  ( ( ( ( z  -  ( 1  /  y
) ) (,) +oo )  u.  ( -oo (,] ( z  -  (
1  /  y ) ) ) )  =  RR  <->  ( RR  \ 
( ( z  -  ( 1  /  y
) ) (,) +oo ) )  =  ( -oo (,] ( z  -  ( 1  / 
y ) ) ) ) )
134127, 132, 133sylancr 663 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
( ( ( z  -  ( 1  / 
y ) ) (,) +oo )  u.  ( -oo (,] ( z  -  ( 1  /  y
) ) ) )  =  RR  <->  ( RR  \  ( ( z  -  ( 1  /  y
) ) (,) +oo ) )  =  ( -oo (,] ( z  -  ( 1  / 
y ) ) ) ) )
135126, 134mpbid 210 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  ( RR  \  ( ( z  -  ( 1  / 
y ) ) (,) +oo ) )  =  ( -oo (,] ( z  -  ( 1  / 
y ) ) ) )
136135imaeq2d 5337 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  ( `' F " ( RR 
\  ( ( z  -  ( 1  / 
y ) ) (,) +oo ) ) )  =  ( `' F "
( -oo (,] ( z  -  ( 1  / 
y ) ) ) ) )
137108, 136eqtr3d 2510 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
( `' F " RR )  \  ( `' F " ( ( z  -  ( 1  /  y ) ) (,) +oo ) ) )  =  ( `' F " ( -oo (,] ( z  -  (
1  /  y ) ) ) ) )
13842ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  ( `' F " RR )  e.  dom  vol )
13932ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  A. x  e.  RR  ( `' F " ( x (,) +oo ) )  e.  dom  vol )
140 oveq1 6291 . . . . . . . . . . . . . 14  |-  ( x  =  ( z  -  ( 1  /  y
) )  ->  (
x (,) +oo )  =  ( ( z  -  ( 1  / 
y ) ) (,) +oo ) )
141140imaeq2d 5337 . . . . . . . . . . . . 13  |-  ( x  =  ( z  -  ( 1  /  y
) )  ->  ( `' F " ( x (,) +oo ) )  =  ( `' F " ( ( z  -  ( 1  /  y
) ) (,) +oo ) ) )
142141eleq1d 2536 . . . . . . . . . . . 12  |-  ( x  =  ( z  -  ( 1  /  y
) )  ->  (
( `' F "
( x (,) +oo ) )  e.  dom  vol  <->  ( `' F " ( ( z  -  ( 1  /  y ) ) (,) +oo ) )  e.  dom  vol )
)
143142rspcv 3210 . . . . . . . . . . 11  |-  ( ( z  -  ( 1  /  y ) )  e.  RR  ->  ( A. x  e.  RR  ( `' F " ( x (,) +oo ) )  e.  dom  vol  ->  ( `' F " ( ( z  -  ( 1  /  y ) ) (,) +oo ) )  e.  dom  vol )
)
14456, 139, 143sylc 60 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  ( `' F " ( ( z  -  ( 1  /  y ) ) (,) +oo ) )  e.  dom  vol )
145 difmbl 21716 . . . . . . . . . 10  |-  ( ( ( `' F " RR )  e.  dom  vol 
/\  ( `' F " ( ( z  -  ( 1  /  y
) ) (,) +oo ) )  e.  dom  vol )  ->  ( ( `' F " RR ) 
\  ( `' F " ( ( z  -  ( 1  /  y
) ) (,) +oo ) ) )  e. 
dom  vol )
146138, 144, 145syl2anc 661 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  (
( `' F " RR )  \  ( `' F " ( ( z  -  ( 1  /  y ) ) (,) +oo ) ) )  e.  dom  vol )
147137, 146eqeltrrd 2556 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  RR )  /\  y  e.  NN )  ->  ( `' F " ( -oo (,] ( z  -  (
1  /  y ) ) ) )  e. 
dom  vol )
148147ralrimiva 2878 . . . . . . 7  |-  ( (
ph  /\  z  e.  RR )  ->  A. y  e.  NN  ( `' F " ( -oo (,] (
z  -  ( 1  /  y ) ) ) )  e.  dom  vol )
149 iunmbl 21726 . . . . . . 7  |-  ( A. y  e.  NN  ( `' F " ( -oo (,] ( z  -  (
1  /  y ) ) ) )  e. 
dom  vol  ->  U_ y  e.  NN  ( `' F " ( -oo (,] (
z  -  ( 1  /  y ) ) ) )  e.  dom  vol )
150148, 149syl 16 . . . . . 6  |-  ( (
ph  /\  z  e.  RR )  ->  U_ y  e.  NN  ( `' F " ( -oo (,] (
z  -  ( 1  /  y ) ) ) )  e.  dom  vol )
151103, 150eqeltrrd 2556 . . . . 5  |-  ( (
ph  /\  z  e.  RR )  ->  ( `' F " ( -oo (,) z ) )  e. 
dom  vol )
152151ralrimiva 2878 . . . 4  |-  ( ph  ->  A. z  e.  RR  ( `' F " ( -oo (,) z ) )  e. 
dom  vol )
153 oveq2 6292 . . . . . . 7  |-  ( z  =  x  ->  ( -oo (,) z )  =  ( -oo (,) x
) )
154153imaeq2d 5337 . . . . . 6  |-  ( z  =  x  ->  ( `' F " ( -oo (,) z ) )  =  ( `' F "
( -oo (,) x ) ) )
155154eleq1d 2536 . . . . 5  |-  ( z  =  x  ->  (
( `' F "
( -oo (,) z ) )  e.  dom  vol  <->  ( `' F " ( -oo (,) x ) )  e. 
dom  vol ) )
156155cbvralv 3088 . . . 4  |-  ( A. z  e.  RR  ( `' F " ( -oo (,) z ) )  e. 
dom  vol  <->  A. x  e.  RR  ( `' F " ( -oo (,) x ) )  e. 
dom  vol )
157152, 156sylib 196 . . 3  |-  ( ph  ->  A. x  e.  RR  ( `' F " ( -oo (,) x ) )  e. 
dom  vol )
158157r19.21bi 2833 . 2  |-  ( (
ph  /\  x  e.  RR )  ->  ( `' F " ( -oo (,) x ) )  e. 
dom  vol )
1591, 43, 31, 158ismbf2d 21811 1  |-  ( ph  ->  F  e. MblFn )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815    \ cdif 3473    u. cun 3474    i^i cin 3475    C_ wss 3476   (/)c0 3785   U_ciun 4325   class class class wbr 4447   `'ccnv 4998   dom cdm 4999   "cima 5002   Fun wfun 5582   -->wf 5584  (class class class)co 6284   RRcr 9491   0cc0 9492   1c1 9493   +oocpnf 9625   -oocmnf 9626   RR*cxr 9627    < clt 9628    <_ cle 9629    - cmin 9805   -ucneg 9806    / cdiv 10206   NNcn 10536   RR+crp 11220   (,)cioo 11529   (,]cioc 11530   volcvol 21638  MblFncmbf 21786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cc 8815  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-disj 4418  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7901  df-oi 7935  df-card 8320  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-n0 10796  df-z 10865  df-uz 11083  df-q 11183  df-rp 11221  df-xadd 11319  df-ioo 11533  df-ioc 11534  df-ico 11535  df-icc 11536  df-fz 11673  df-fzo 11793  df-fl 11897  df-seq 12076  df-exp 12135  df-hash 12374  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-clim 13274  df-rlim 13275  df-sum 13472  df-xmet 18211  df-met 18212  df-ovol 21639  df-vol 21640  df-mbf 21791
This theorem is referenced by:  mbfaddlem  21830  mbfsup  21834
  Copyright terms: Public domain W3C validator