MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbf Structured version   Unicode version

Theorem ismbf 21113
Description: The predicate " F is a measurable function". A function is measurable iff the preimages of all open intervals are measurable sets in the sense of ismbl 21014. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
ismbf  |-  ( F : A --> RR  ->  ( F  e. MblFn  <->  A. x  e.  ran  (,) ( `' F "
x )  e.  dom  vol ) )
Distinct variable groups:    x, F    x, A

Proof of Theorem ismbf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 mbfdm 21111 . . 3  |-  ( F  e. MblFn  ->  dom  F  e.  dom  vol )
2 fdm 5568 . . . 4  |-  ( F : A --> RR  ->  dom 
F  =  A )
32eleq1d 2509 . . 3  |-  ( F : A --> RR  ->  ( dom  F  e.  dom  vol  <->  A  e.  dom  vol )
)
41, 3syl5ib 219 . 2  |-  ( F : A --> RR  ->  ( F  e. MblFn  ->  A  e. 
dom  vol ) )
5 ioomax 11375 . . . . 5  |-  ( -oo (,) +oo )  =  RR
6 ioorebas 11396 . . . . 5  |-  ( -oo (,) +oo )  e.  ran  (,)
75, 6eqeltrri 2514 . . . 4  |-  RR  e.  ran  (,)
8 imaeq2 5170 . . . . . 6  |-  ( x  =  RR  ->  ( `' F " x )  =  ( `' F " RR ) )
98eleq1d 2509 . . . . 5  |-  ( x  =  RR  ->  (
( `' F "
x )  e.  dom  vol  <->  ( `' F " RR )  e.  dom  vol )
)
109rspcv 3074 . . . 4  |-  ( RR  e.  ran  (,)  ->  ( A. x  e.  ran  (,) ( `' F "
x )  e.  dom  vol 
->  ( `' F " RR )  e.  dom  vol ) )
117, 10ax-mp 5 . . 3  |-  ( A. x  e.  ran  (,) ( `' F " x )  e.  dom  vol  ->  ( `' F " RR )  e.  dom  vol )
12 fimacnv 5840 . . . 4  |-  ( F : A --> RR  ->  ( `' F " RR )  =  A )
1312eleq1d 2509 . . 3  |-  ( F : A --> RR  ->  ( ( `' F " RR )  e.  dom  vol  <->  A  e.  dom  vol )
)
1411, 13syl5ib 219 . 2  |-  ( F : A --> RR  ->  ( A. x  e.  ran  (,) ( `' F "
x )  e.  dom  vol 
->  A  e.  dom  vol ) )
15 ffvelrn 5846 . . . . . . . . . . . . . 14  |-  ( ( F : A --> RR  /\  x  e.  A )  ->  ( F `  x
)  e.  RR )
1615adantlr 714 . . . . . . . . . . . . 13  |-  ( ( ( F : A --> RR  /\  A  e.  dom  vol )  /\  x  e.  A )  ->  ( F `  x )  e.  RR )
1716rered 12718 . . . . . . . . . . . 12  |-  ( ( ( F : A --> RR  /\  A  e.  dom  vol )  /\  x  e.  A )  ->  (
Re `  ( F `  x ) )  =  ( F `  x
) )
1817mpteq2dva 4383 . . . . . . . . . . 11  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( x  e.  A  |->  ( Re `  ( F `  x )
) )  =  ( x  e.  A  |->  ( F `  x ) ) )
1916recnd 9417 . . . . . . . . . . . 12  |-  ( ( ( F : A --> RR  /\  A  e.  dom  vol )  /\  x  e.  A )  ->  ( F `  x )  e.  CC )
20 simpl 457 . . . . . . . . . . . . 13  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  F : A --> RR )
2120feqmptd 5749 . . . . . . . . . . . 12  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  F  =  ( x  e.  A  |->  ( F `
 x ) ) )
22 ref 12606 . . . . . . . . . . . . . 14  |-  Re : CC
--> RR
2322a1i 11 . . . . . . . . . . . . 13  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  Re : CC --> RR )
2423feqmptd 5749 . . . . . . . . . . . 12  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  Re  =  ( y  e.  CC  |->  ( Re
`  y ) ) )
25 fveq2 5696 . . . . . . . . . . . 12  |-  ( y  =  ( F `  x )  ->  (
Re `  y )  =  ( Re `  ( F `  x ) ) )
2619, 21, 24, 25fmptco 5881 . . . . . . . . . . 11  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( Re  o.  F
)  =  ( x  e.  A  |->  ( Re
`  ( F `  x ) ) ) )
2718, 26, 213eqtr4rd 2486 . . . . . . . . . 10  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  F  =  ( Re  o.  F ) )
2827cnveqd 5020 . . . . . . . . 9  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  `' F  =  `' ( Re  o.  F
) )
2928imaeq1d 5173 . . . . . . . 8  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( `' F "
x )  =  ( `' ( Re  o.  F ) " x
) )
3029eleq1d 2509 . . . . . . 7  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( ( `' F " x )  e.  dom  vol  <->  ( `' ( Re  o.  F ) " x
)  e.  dom  vol ) )
31 imf 12607 . . . . . . . . . . . . . . . 16  |-  Im : CC
--> RR
3231a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  Im : CC --> RR )
3332feqmptd 5749 . . . . . . . . . . . . . 14  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  Im  =  ( y  e.  CC  |->  ( Im
`  y ) ) )
34 fveq2 5696 . . . . . . . . . . . . . 14  |-  ( y  =  ( F `  x )  ->  (
Im `  y )  =  ( Im `  ( F `  x ) ) )
3519, 21, 33, 34fmptco 5881 . . . . . . . . . . . . 13  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( Im  o.  F
)  =  ( x  e.  A  |->  ( Im
`  ( F `  x ) ) ) )
3616reim0d 12719 . . . . . . . . . . . . . 14  |-  ( ( ( F : A --> RR  /\  A  e.  dom  vol )  /\  x  e.  A )  ->  (
Im `  ( F `  x ) )  =  0 )
3736mpteq2dva 4383 . . . . . . . . . . . . 13  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( x  e.  A  |->  ( Im `  ( F `  x )
) )  =  ( x  e.  A  |->  0 ) )
3835, 37eqtrd 2475 . . . . . . . . . . . 12  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( Im  o.  F
)  =  ( x  e.  A  |->  0 ) )
39 fconstmpt 4887 . . . . . . . . . . . 12  |-  ( A  X.  { 0 } )  =  ( x  e.  A  |->  0 )
4038, 39syl6eqr 2493 . . . . . . . . . . 11  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( Im  o.  F
)  =  ( A  X.  { 0 } ) )
4140cnveqd 5020 . . . . . . . . . 10  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  `' ( Im  o.  F )  =  `' ( A  X.  { 0 } ) )
4241imaeq1d 5173 . . . . . . . . 9  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( `' ( Im  o.  F ) "
x )  =  ( `' ( A  X.  { 0 } )
" x ) )
43 simpr 461 . . . . . . . . . 10  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  A  e.  dom  vol )
44 0re 9391 . . . . . . . . . 10  |-  0  e.  RR
45 mbfconstlem 21112 . . . . . . . . . 10  |-  ( ( A  e.  dom  vol  /\  0  e.  RR )  ->  ( `' ( A  X.  { 0 } ) " x
)  e.  dom  vol )
4643, 44, 45sylancl 662 . . . . . . . . 9  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( `' ( A  X.  { 0 } ) " x )  e.  dom  vol )
4742, 46eqeltrd 2517 . . . . . . . 8  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( `' ( Im  o.  F ) "
x )  e.  dom  vol )
4847biantrud 507 . . . . . . 7  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( ( `' ( Re  o.  F )
" x )  e. 
dom  vol  <->  ( ( `' ( Re  o.  F
) " x )  e.  dom  vol  /\  ( `' ( Im  o.  F ) " x
)  e.  dom  vol ) ) )
4930, 48bitrd 253 . . . . . 6  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( ( `' F " x )  e.  dom  vol  <->  ( ( `' ( Re  o.  F ) "
x )  e.  dom  vol 
/\  ( `' ( Im  o.  F )
" x )  e. 
dom  vol ) ) )
5049ralbidv 2740 . . . . 5  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( A. x  e. 
ran  (,) ( `' F " x )  e.  dom  vol  <->  A. x  e.  ran  (,) ( ( `' ( Re  o.  F )
" x )  e. 
dom  vol  /\  ( `' ( Im  o.  F
) " x )  e.  dom  vol )
) )
51 ax-resscn 9344 . . . . . . . 8  |-  RR  C_  CC
52 fss 5572 . . . . . . . 8  |-  ( ( F : A --> RR  /\  RR  C_  CC )  ->  F : A --> CC )
5351, 52mpan2 671 . . . . . . 7  |-  ( F : A --> RR  ->  F : A --> CC )
54 mblss 21019 . . . . . . 7  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
55 cnex 9368 . . . . . . . 8  |-  CC  e.  _V
56 reex 9378 . . . . . . . 8  |-  RR  e.  _V
57 elpm2r 7235 . . . . . . . 8  |-  ( ( ( CC  e.  _V  /\  RR  e.  _V )  /\  ( F : A --> CC  /\  A  C_  RR ) )  ->  F  e.  ( CC  ^pm  RR ) )
5855, 56, 57mpanl12 682 . . . . . . 7  |-  ( ( F : A --> CC  /\  A  C_  RR )  ->  F  e.  ( CC  ^pm 
RR ) )
5953, 54, 58syl2an 477 . . . . . 6  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  F  e.  ( CC 
^pm  RR ) )
6059biantrurd 508 . . . . 5  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( A. x  e. 
ran  (,) ( ( `' ( Re  o.  F
) " x )  e.  dom  vol  /\  ( `' ( Im  o.  F ) " x
)  e.  dom  vol ) 
<->  ( F  e.  ( CC  ^pm  RR )  /\  A. x  e.  ran  (,) ( ( `' ( Re  o.  F )
" x )  e. 
dom  vol  /\  ( `' ( Im  o.  F
) " x )  e.  dom  vol )
) ) )
6150, 60bitrd 253 . . . 4  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( A. x  e. 
ran  (,) ( `' F " x )  e.  dom  vol  <->  ( F  e.  ( CC 
^pm  RR )  /\  A. x  e.  ran  (,) (
( `' ( Re  o.  F ) "
x )  e.  dom  vol 
/\  ( `' ( Im  o.  F )
" x )  e. 
dom  vol ) ) ) )
62 ismbf1 21109 . . . 4  |-  ( F  e. MblFn 
<->  ( F  e.  ( CC  ^pm  RR )  /\  A. x  e.  ran  (,) ( ( `' ( Re  o.  F )
" x )  e. 
dom  vol  /\  ( `' ( Im  o.  F
) " x )  e.  dom  vol )
) )
6361, 62syl6rbbr 264 . . 3  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( F  e. MblFn  <->  A. x  e.  ran  (,) ( `' F " x )  e.  dom  vol )
)
6463ex 434 . 2  |-  ( F : A --> RR  ->  ( A  e.  dom  vol  ->  ( F  e. MblFn  <->  A. x  e.  ran  (,) ( `' F " x )  e.  dom  vol )
) )
654, 14, 64pm5.21ndd 354 1  |-  ( F : A --> RR  ->  ( F  e. MblFn  <->  A. x  e.  ran  (,) ( `' F "
x )  e.  dom  vol ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2720   _Vcvv 2977    C_ wss 3333   {csn 3882    e. cmpt 4355    X. cxp 4843   `'ccnv 4844   dom cdm 4845   ran crn 4846   "cima 4848    o. ccom 4849   -->wf 5419   ` cfv 5423  (class class class)co 6096    ^pm cpm 7220   CCcc 9285   RRcr 9286   0cc0 9287   +oocpnf 9420   -oocmnf 9421   (,)cioo 11305   Recre 12591   Imcim 12592   volcvol 20952  MblFncmbf 21099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-inf2 7852  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364  ax-pre-sup 9365
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-se 4685  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-isom 5432  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-of 6325  df-om 6482  df-1st 6582  df-2nd 6583  df-recs 6837  df-rdg 6871  df-1o 6925  df-2o 6926  df-oadd 6929  df-er 7106  df-map 7221  df-pm 7222  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-sup 7696  df-oi 7729  df-card 8114  df-cda 8342  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-div 9999  df-nn 10328  df-2 10385  df-3 10386  df-n0 10585  df-z 10652  df-uz 10867  df-q 10959  df-rp 10997  df-xadd 11095  df-ioo 11309  df-ico 11311  df-icc 11312  df-fz 11443  df-fzo 11554  df-fl 11647  df-seq 11812  df-exp 11871  df-hash 12109  df-cj 12593  df-re 12594  df-im 12595  df-sqr 12729  df-abs 12730  df-clim 12971  df-sum 13169  df-xmet 17815  df-met 17816  df-ovol 20953  df-vol 20954  df-mbf 21104
This theorem is referenced by:  ismbfcn  21114  mbfima  21115  mbfid  21119  ismbfd  21123  mbfeqalem  21125  mbfres2  21128  mbfimaopnlem  21138  i1fd  21164  elmbfmvol2  26687  cnambfre  28445
  Copyright terms: Public domain W3C validator