MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbf Structured version   Unicode version

Theorem ismbf 21800
Description: The predicate " F is a measurable function". A function is measurable iff the preimages of all open intervals are measurable sets in the sense of ismbl 21700. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
ismbf  |-  ( F : A --> RR  ->  ( F  e. MblFn  <->  A. x  e.  ran  (,) ( `' F "
x )  e.  dom  vol ) )
Distinct variable groups:    x, F    x, A

Proof of Theorem ismbf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 mbfdm 21798 . . 3  |-  ( F  e. MblFn  ->  dom  F  e.  dom  vol )
2 fdm 5735 . . . 4  |-  ( F : A --> RR  ->  dom 
F  =  A )
32eleq1d 2536 . . 3  |-  ( F : A --> RR  ->  ( dom  F  e.  dom  vol  <->  A  e.  dom  vol )
)
41, 3syl5ib 219 . 2  |-  ( F : A --> RR  ->  ( F  e. MblFn  ->  A  e. 
dom  vol ) )
5 ioomax 11599 . . . . 5  |-  ( -oo (,) +oo )  =  RR
6 ioorebas 11626 . . . . 5  |-  ( -oo (,) +oo )  e.  ran  (,)
75, 6eqeltrri 2552 . . . 4  |-  RR  e.  ran  (,)
8 imaeq2 5333 . . . . . 6  |-  ( x  =  RR  ->  ( `' F " x )  =  ( `' F " RR ) )
98eleq1d 2536 . . . . 5  |-  ( x  =  RR  ->  (
( `' F "
x )  e.  dom  vol  <->  ( `' F " RR )  e.  dom  vol )
)
109rspcv 3210 . . . 4  |-  ( RR  e.  ran  (,)  ->  ( A. x  e.  ran  (,) ( `' F "
x )  e.  dom  vol 
->  ( `' F " RR )  e.  dom  vol ) )
117, 10ax-mp 5 . . 3  |-  ( A. x  e.  ran  (,) ( `' F " x )  e.  dom  vol  ->  ( `' F " RR )  e.  dom  vol )
12 fimacnv 6013 . . . 4  |-  ( F : A --> RR  ->  ( `' F " RR )  =  A )
1312eleq1d 2536 . . 3  |-  ( F : A --> RR  ->  ( ( `' F " RR )  e.  dom  vol  <->  A  e.  dom  vol )
)
1411, 13syl5ib 219 . 2  |-  ( F : A --> RR  ->  ( A. x  e.  ran  (,) ( `' F "
x )  e.  dom  vol 
->  A  e.  dom  vol ) )
15 ffvelrn 6019 . . . . . . . . . . . . . 14  |-  ( ( F : A --> RR  /\  x  e.  A )  ->  ( F `  x
)  e.  RR )
1615adantlr 714 . . . . . . . . . . . . 13  |-  ( ( ( F : A --> RR  /\  A  e.  dom  vol )  /\  x  e.  A )  ->  ( F `  x )  e.  RR )
1716rered 13020 . . . . . . . . . . . 12  |-  ( ( ( F : A --> RR  /\  A  e.  dom  vol )  /\  x  e.  A )  ->  (
Re `  ( F `  x ) )  =  ( F `  x
) )
1817mpteq2dva 4533 . . . . . . . . . . 11  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( x  e.  A  |->  ( Re `  ( F `  x )
) )  =  ( x  e.  A  |->  ( F `  x ) ) )
1916recnd 9622 . . . . . . . . . . . 12  |-  ( ( ( F : A --> RR  /\  A  e.  dom  vol )  /\  x  e.  A )  ->  ( F `  x )  e.  CC )
20 simpl 457 . . . . . . . . . . . . 13  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  F : A --> RR )
2120feqmptd 5920 . . . . . . . . . . . 12  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  F  =  ( x  e.  A  |->  ( F `
 x ) ) )
22 ref 12908 . . . . . . . . . . . . . 14  |-  Re : CC
--> RR
2322a1i 11 . . . . . . . . . . . . 13  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  Re : CC --> RR )
2423feqmptd 5920 . . . . . . . . . . . 12  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  Re  =  ( y  e.  CC  |->  ( Re
`  y ) ) )
25 fveq2 5866 . . . . . . . . . . . 12  |-  ( y  =  ( F `  x )  ->  (
Re `  y )  =  ( Re `  ( F `  x ) ) )
2619, 21, 24, 25fmptco 6054 . . . . . . . . . . 11  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( Re  o.  F
)  =  ( x  e.  A  |->  ( Re
`  ( F `  x ) ) ) )
2718, 26, 213eqtr4rd 2519 . . . . . . . . . 10  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  F  =  ( Re  o.  F ) )
2827cnveqd 5178 . . . . . . . . 9  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  `' F  =  `' ( Re  o.  F
) )
2928imaeq1d 5336 . . . . . . . 8  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( `' F "
x )  =  ( `' ( Re  o.  F ) " x
) )
3029eleq1d 2536 . . . . . . 7  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( ( `' F " x )  e.  dom  vol  <->  ( `' ( Re  o.  F ) " x
)  e.  dom  vol ) )
31 imf 12909 . . . . . . . . . . . . . . . 16  |-  Im : CC
--> RR
3231a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  Im : CC --> RR )
3332feqmptd 5920 . . . . . . . . . . . . . 14  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  Im  =  ( y  e.  CC  |->  ( Im
`  y ) ) )
34 fveq2 5866 . . . . . . . . . . . . . 14  |-  ( y  =  ( F `  x )  ->  (
Im `  y )  =  ( Im `  ( F `  x ) ) )
3519, 21, 33, 34fmptco 6054 . . . . . . . . . . . . 13  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( Im  o.  F
)  =  ( x  e.  A  |->  ( Im
`  ( F `  x ) ) ) )
3616reim0d 13021 . . . . . . . . . . . . . 14  |-  ( ( ( F : A --> RR  /\  A  e.  dom  vol )  /\  x  e.  A )  ->  (
Im `  ( F `  x ) )  =  0 )
3736mpteq2dva 4533 . . . . . . . . . . . . 13  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( x  e.  A  |->  ( Im `  ( F `  x )
) )  =  ( x  e.  A  |->  0 ) )
3835, 37eqtrd 2508 . . . . . . . . . . . 12  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( Im  o.  F
)  =  ( x  e.  A  |->  0 ) )
39 fconstmpt 5043 . . . . . . . . . . . 12  |-  ( A  X.  { 0 } )  =  ( x  e.  A  |->  0 )
4038, 39syl6eqr 2526 . . . . . . . . . . 11  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( Im  o.  F
)  =  ( A  X.  { 0 } ) )
4140cnveqd 5178 . . . . . . . . . 10  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  `' ( Im  o.  F )  =  `' ( A  X.  { 0 } ) )
4241imaeq1d 5336 . . . . . . . . 9  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( `' ( Im  o.  F ) "
x )  =  ( `' ( A  X.  { 0 } )
" x ) )
43 simpr 461 . . . . . . . . . 10  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  A  e.  dom  vol )
44 0re 9596 . . . . . . . . . 10  |-  0  e.  RR
45 mbfconstlem 21799 . . . . . . . . . 10  |-  ( ( A  e.  dom  vol  /\  0  e.  RR )  ->  ( `' ( A  X.  { 0 } ) " x
)  e.  dom  vol )
4643, 44, 45sylancl 662 . . . . . . . . 9  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( `' ( A  X.  { 0 } ) " x )  e.  dom  vol )
4742, 46eqeltrd 2555 . . . . . . . 8  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( `' ( Im  o.  F ) "
x )  e.  dom  vol )
4847biantrud 507 . . . . . . 7  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( ( `' ( Re  o.  F )
" x )  e. 
dom  vol  <->  ( ( `' ( Re  o.  F
) " x )  e.  dom  vol  /\  ( `' ( Im  o.  F ) " x
)  e.  dom  vol ) ) )
4930, 48bitrd 253 . . . . . 6  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( ( `' F " x )  e.  dom  vol  <->  ( ( `' ( Re  o.  F ) "
x )  e.  dom  vol 
/\  ( `' ( Im  o.  F )
" x )  e. 
dom  vol ) ) )
5049ralbidv 2903 . . . . 5  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( A. x  e. 
ran  (,) ( `' F " x )  e.  dom  vol  <->  A. x  e.  ran  (,) ( ( `' ( Re  o.  F )
" x )  e. 
dom  vol  /\  ( `' ( Im  o.  F
) " x )  e.  dom  vol )
) )
51 ax-resscn 9549 . . . . . . . 8  |-  RR  C_  CC
52 fss 5739 . . . . . . . 8  |-  ( ( F : A --> RR  /\  RR  C_  CC )  ->  F : A --> CC )
5351, 52mpan2 671 . . . . . . 7  |-  ( F : A --> RR  ->  F : A --> CC )
54 mblss 21705 . . . . . . 7  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
55 cnex 9573 . . . . . . . 8  |-  CC  e.  _V
56 reex 9583 . . . . . . . 8  |-  RR  e.  _V
57 elpm2r 7436 . . . . . . . 8  |-  ( ( ( CC  e.  _V  /\  RR  e.  _V )  /\  ( F : A --> CC  /\  A  C_  RR ) )  ->  F  e.  ( CC  ^pm  RR ) )
5855, 56, 57mpanl12 682 . . . . . . 7  |-  ( ( F : A --> CC  /\  A  C_  RR )  ->  F  e.  ( CC  ^pm 
RR ) )
5953, 54, 58syl2an 477 . . . . . 6  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  F  e.  ( CC 
^pm  RR ) )
6059biantrurd 508 . . . . 5  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( A. x  e. 
ran  (,) ( ( `' ( Re  o.  F
) " x )  e.  dom  vol  /\  ( `' ( Im  o.  F ) " x
)  e.  dom  vol ) 
<->  ( F  e.  ( CC  ^pm  RR )  /\  A. x  e.  ran  (,) ( ( `' ( Re  o.  F )
" x )  e. 
dom  vol  /\  ( `' ( Im  o.  F
) " x )  e.  dom  vol )
) ) )
6150, 60bitrd 253 . . . 4  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( A. x  e. 
ran  (,) ( `' F " x )  e.  dom  vol  <->  ( F  e.  ( CC 
^pm  RR )  /\  A. x  e.  ran  (,) (
( `' ( Re  o.  F ) "
x )  e.  dom  vol 
/\  ( `' ( Im  o.  F )
" x )  e. 
dom  vol ) ) ) )
62 ismbf1 21796 . . . 4  |-  ( F  e. MblFn 
<->  ( F  e.  ( CC  ^pm  RR )  /\  A. x  e.  ran  (,) ( ( `' ( Re  o.  F )
" x )  e. 
dom  vol  /\  ( `' ( Im  o.  F
) " x )  e.  dom  vol )
) )
6361, 62syl6rbbr 264 . . 3  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( F  e. MblFn  <->  A. x  e.  ran  (,) ( `' F " x )  e.  dom  vol )
)
6463ex 434 . 2  |-  ( F : A --> RR  ->  ( A  e.  dom  vol  ->  ( F  e. MblFn  <->  A. x  e.  ran  (,) ( `' F " x )  e.  dom  vol )
) )
654, 14, 64pm5.21ndd 354 1  |-  ( F : A --> RR  ->  ( F  e. MblFn  <->  A. x  e.  ran  (,) ( `' F "
x )  e.  dom  vol ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   _Vcvv 3113    C_ wss 3476   {csn 4027    |-> cmpt 4505    X. cxp 4997   `'ccnv 4998   dom cdm 4999   ran crn 5000   "cima 5002    o. ccom 5003   -->wf 5584   ` cfv 5588  (class class class)co 6284    ^pm cpm 7421   CCcc 9490   RRcr 9491   0cc0 9492   +oocpnf 9625   -oocmnf 9626   (,)cioo 11529   Recre 12893   Imcim 12894   volcvol 21638  MblFncmbf 21786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7901  df-oi 7935  df-card 8320  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-n0 10796  df-z 10865  df-uz 11083  df-q 11183  df-rp 11221  df-xadd 11319  df-ioo 11533  df-ico 11535  df-icc 11536  df-fz 11673  df-fzo 11793  df-fl 11897  df-seq 12076  df-exp 12135  df-hash 12374  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-clim 13274  df-sum 13472  df-xmet 18211  df-met 18212  df-ovol 21639  df-vol 21640  df-mbf 21791
This theorem is referenced by:  ismbfcn  21801  mbfima  21802  mbfid  21806  ismbfd  21810  mbfeqalem  21812  mbfres2  21815  mbfimaopnlem  21825  i1fd  21851  elmbfmvol2  27906  cnambfre  29668  mbf0  31303
  Copyright terms: Public domain W3C validator