MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islvec Structured version   Unicode version

Theorem islvec 17545
Description: The predicate "is a left vector space". (Contributed by NM, 11-Nov-2013.)
Hypothesis
Ref Expression
islvec.1  |-  F  =  (Scalar `  W )
Assertion
Ref Expression
islvec  |-  ( W  e.  LVec  <->  ( W  e. 
LMod  /\  F  e.  DivRing ) )

Proof of Theorem islvec
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 fveq2 5865 . . . 4  |-  ( f  =  W  ->  (Scalar `  f )  =  (Scalar `  W ) )
2 islvec.1 . . . 4  |-  F  =  (Scalar `  W )
31, 2syl6eqr 2526 . . 3  |-  ( f  =  W  ->  (Scalar `  f )  =  F )
43eleq1d 2536 . 2  |-  ( f  =  W  ->  (
(Scalar `  f )  e.  DivRing 
<->  F  e.  DivRing ) )
5 df-lvec 17544 . 2  |-  LVec  =  { f  e.  LMod  |  (Scalar `  f )  e.  DivRing }
64, 5elrab2 3263 1  |-  ( W  e.  LVec  <->  ( W  e. 
LMod  /\  F  e.  DivRing ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   ` cfv 5587  Scalarcsca 14557   DivRingcdr 17191   LModclmod 17307   LVecclvec 17543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-iota 5550  df-fv 5595  df-lvec 17544
This theorem is referenced by:  lvecdrng  17546  lveclmod  17547  lsslvec  17548  lvecprop2d  17607  lvecpropd  17608  rlmlvec  17647  frlmphl  18595  tvclvec  20452  isnvc2  20958  lmod1zrnlvec  32185  lduallvec  33960  dvalveclem  35831  dvhlveclem  35914
  Copyright terms: Public domain W3C validator