Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isltrn Structured version   Unicode version

Theorem isltrn 33603
Description: The predicate "is a lattice translation". Similar to definition of translation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
ltrnset.l  |-  .<_  =  ( le `  K )
ltrnset.j  |-  .\/  =  ( join `  K )
ltrnset.m  |-  ./\  =  ( meet `  K )
ltrnset.a  |-  A  =  ( Atoms `  K )
ltrnset.h  |-  H  =  ( LHyp `  K
)
ltrnset.d  |-  D  =  ( ( LDil `  K
) `  W )
ltrnset.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
isltrn  |-  ( ( K  e.  B  /\  W  e.  H )  ->  ( F  e.  T  <->  ( F  e.  D  /\  A. p  e.  A  A. q  e.  A  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) ) ) )
Distinct variable groups:    q, p, A    K, p, q    W, p, q    F, p, q
Allowed substitution hints:    B( q, p)    D( q, p)    T( q, p)    H( q, p)    .\/ ( q, p)   
.<_ ( q, p)    ./\ ( q, p)

Proof of Theorem isltrn
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 ltrnset.l . . . 4  |-  .<_  =  ( le `  K )
2 ltrnset.j . . . 4  |-  .\/  =  ( join `  K )
3 ltrnset.m . . . 4  |-  ./\  =  ( meet `  K )
4 ltrnset.a . . . 4  |-  A  =  ( Atoms `  K )
5 ltrnset.h . . . 4  |-  H  =  ( LHyp `  K
)
6 ltrnset.d . . . 4  |-  D  =  ( ( LDil `  K
) `  W )
7 ltrnset.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
81, 2, 3, 4, 5, 6, 7ltrnset 33602 . . 3  |-  ( ( K  e.  B  /\  W  e.  H )  ->  T  =  { f  e.  D  |  A. p  e.  A  A. q  e.  A  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  (
f `  p )
)  ./\  W )  =  ( ( q 
.\/  ( f `  q ) )  ./\  W ) ) } )
98eleq2d 2505 . 2  |-  ( ( K  e.  B  /\  W  e.  H )  ->  ( F  e.  T  <->  F  e.  { f  e.  D  |  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( f `  p ) )  ./\  W )  =  ( ( q  .\/  ( f `
 q ) ) 
./\  W ) ) } ) )
10 fveq1 5685 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  p )  =  ( F `  p ) )
1110oveq2d 6102 . . . . . . 7  |-  ( f  =  F  ->  (
p  .\/  ( f `  p ) )  =  ( p  .\/  ( F `  p )
) )
1211oveq1d 6101 . . . . . 6  |-  ( f  =  F  ->  (
( p  .\/  (
f `  p )
)  ./\  W )  =  ( ( p 
.\/  ( F `  p ) )  ./\  W ) )
13 fveq1 5685 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  q )  =  ( F `  q ) )
1413oveq2d 6102 . . . . . . 7  |-  ( f  =  F  ->  (
q  .\/  ( f `  q ) )  =  ( q  .\/  ( F `  q )
) )
1514oveq1d 6101 . . . . . 6  |-  ( f  =  F  ->  (
( q  .\/  (
f `  q )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) )
1612, 15eqeq12d 2452 . . . . 5  |-  ( f  =  F  ->  (
( ( p  .\/  ( f `  p
) )  ./\  W
)  =  ( ( q  .\/  ( f `
 q ) ) 
./\  W )  <->  ( (
p  .\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) )
1716imbi2d 316 . . . 4  |-  ( f  =  F  ->  (
( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  (
f `  p )
)  ./\  W )  =  ( ( q 
.\/  ( f `  q ) )  ./\  W ) )  <->  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) ) )
18172ralbidv 2752 . . 3  |-  ( f  =  F  ->  ( A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  (
f `  p )
)  ./\  W )  =  ( ( q 
.\/  ( f `  q ) )  ./\  W ) )  <->  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) ) )
1918elrab 3112 . 2  |-  ( F  e.  { f  e.  D  |  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( f `  p ) )  ./\  W )  =  ( ( q  .\/  ( f `
 q ) ) 
./\  W ) ) }  <->  ( F  e.  D  /\  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) ) )
209, 19syl6bb 261 1  |-  ( ( K  e.  B  /\  W  e.  H )  ->  ( F  e.  T  <->  ( F  e.  D  /\  A. p  e.  A  A. q  e.  A  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2710   {crab 2714   class class class wbr 4287   ` cfv 5413  (class class class)co 6086   lecple 14237   joincjn 15106   meetcmee 15107   Atomscatm 32748   LHypclh 33468   LDilcldil 33584   LTrncltrn 33585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pr 4526
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6089  df-ltrn 33589
This theorem is referenced by:  isltrn2N  33604  ltrnu  33605  ltrnldil  33606  ltrncnv  33630  idltrn  33634  cdleme50ltrn  34041  ltrnco  34203
  Copyright terms: Public domain W3C validator