Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islshpkrN Structured version   Unicode version

Theorem islshpkrN 33917
Description: The predicate "is a hyperplane" (of a left module or left vector space). TODO: should it be 
U  =  ( K `
 g ) or  ( K `  g )  =  U as in lshpkrex 33915? Both standards seem to be used randomly throughout set.mm; we should decide on a preferred one. (Contributed by NM, 7-Oct-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lshpset2.v  |-  V  =  ( Base `  W
)
lshpset2.d  |-  D  =  (Scalar `  W )
lshpset2.z  |-  .0.  =  ( 0g `  D )
lshpset2.h  |-  H  =  (LSHyp `  W )
lshpset2.f  |-  F  =  (LFnl `  W )
lshpset2.k  |-  K  =  (LKer `  W )
Assertion
Ref Expression
islshpkrN  |-  ( W  e.  LVec  ->  ( U  e.  H  <->  E. g  e.  F  ( g  =/=  ( V  X.  {  .0.  } )  /\  U  =  ( K `  g ) ) ) )
Distinct variable groups:    g, F    g, H    g, K    g, V    g, W    U, g
Allowed substitution hints:    D( g)    .0. ( g)

Proof of Theorem islshpkrN
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 lshpset2.v . . . 4  |-  V  =  ( Base `  W
)
2 lshpset2.d . . . 4  |-  D  =  (Scalar `  W )
3 lshpset2.z . . . 4  |-  .0.  =  ( 0g `  D )
4 lshpset2.h . . . 4  |-  H  =  (LSHyp `  W )
5 lshpset2.f . . . 4  |-  F  =  (LFnl `  W )
6 lshpset2.k . . . 4  |-  K  =  (LKer `  W )
71, 2, 3, 4, 5, 6lshpset2N 33916 . . 3  |-  ( W  e.  LVec  ->  H  =  { s  |  E. g  e.  F  (
g  =/=  ( V  X.  {  .0.  }
)  /\  s  =  ( K `  g ) ) } )
87eleq2d 2537 . 2  |-  ( W  e.  LVec  ->  ( U  e.  H  <->  U  e.  { s  |  E. g  e.  F  ( g  =/=  ( V  X.  {  .0.  } )  /\  s  =  ( K `  g ) ) } ) )
9 elex 3122 . . . 4  |-  ( U  e.  { s  |  E. g  e.  F  ( g  =/=  ( V  X.  {  .0.  }
)  /\  s  =  ( K `  g ) ) }  ->  U  e.  _V )
109adantl 466 . . 3  |-  ( ( W  e.  LVec  /\  U  e.  { s  |  E. g  e.  F  (
g  =/=  ( V  X.  {  .0.  }
)  /\  s  =  ( K `  g ) ) } )  ->  U  e.  _V )
11 fvex 5874 . . . . . . 7  |-  ( K `
 g )  e. 
_V
12 eleq1 2539 . . . . . . 7  |-  ( U  =  ( K `  g )  ->  ( U  e.  _V  <->  ( K `  g )  e.  _V ) )
1311, 12mpbiri 233 . . . . . 6  |-  ( U  =  ( K `  g )  ->  U  e.  _V )
1413adantl 466 . . . . 5  |-  ( ( g  =/=  ( V  X.  {  .0.  }
)  /\  U  =  ( K `  g ) )  ->  U  e.  _V )
1514rexlimivw 2952 . . . 4  |-  ( E. g  e.  F  ( g  =/=  ( V  X.  {  .0.  }
)  /\  U  =  ( K `  g ) )  ->  U  e.  _V )
1615adantl 466 . . 3  |-  ( ( W  e.  LVec  /\  E. g  e.  F  (
g  =/=  ( V  X.  {  .0.  }
)  /\  U  =  ( K `  g ) ) )  ->  U  e.  _V )
17 eqeq1 2471 . . . . . 6  |-  ( s  =  U  ->  (
s  =  ( K `
 g )  <->  U  =  ( K `  g ) ) )
1817anbi2d 703 . . . . 5  |-  ( s  =  U  ->  (
( g  =/=  ( V  X.  {  .0.  }
)  /\  s  =  ( K `  g ) )  <->  ( g  =/=  ( V  X.  {  .0.  } )  /\  U  =  ( K `  g ) ) ) )
1918rexbidv 2973 . . . 4  |-  ( s  =  U  ->  ( E. g  e.  F  ( g  =/=  ( V  X.  {  .0.  }
)  /\  s  =  ( K `  g ) )  <->  E. g  e.  F  ( g  =/=  ( V  X.  {  .0.  }
)  /\  U  =  ( K `  g ) ) ) )
2019elabg 3251 . . 3  |-  ( U  e.  _V  ->  ( U  e.  { s  |  E. g  e.  F  ( g  =/=  ( V  X.  {  .0.  }
)  /\  s  =  ( K `  g ) ) }  <->  E. g  e.  F  ( g  =/=  ( V  X.  {  .0.  } )  /\  U  =  ( K `  g ) ) ) )
2110, 16, 20pm5.21nd 898 . 2  |-  ( W  e.  LVec  ->  ( U  e.  { s  |  E. g  e.  F  ( g  =/=  ( V  X.  {  .0.  }
)  /\  s  =  ( K `  g ) ) }  <->  E. g  e.  F  ( g  =/=  ( V  X.  {  .0.  } )  /\  U  =  ( K `  g ) ) ) )
228, 21bitrd 253 1  |-  ( W  e.  LVec  ->  ( U  e.  H  <->  E. g  e.  F  ( g  =/=  ( V  X.  {  .0.  } )  /\  U  =  ( K `  g ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   {cab 2452    =/= wne 2662   E.wrex 2815   _Vcvv 3113   {csn 4027    X. cxp 4997   ` cfv 5586   Basecbs 14483  Scalarcsca 14551   0gc0g 14688   LVecclvec 17528  LSHypclsh 33772  LFnlclfn 33854  LKerclk 33882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-tpos 6952  df-recs 7039  df-rdg 7073  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-2 10590  df-3 10591  df-ndx 14486  df-slot 14487  df-base 14488  df-sets 14489  df-ress 14490  df-plusg 14561  df-mulr 14562  df-0g 14690  df-mnd 15725  df-submnd 15775  df-grp 15855  df-minusg 15856  df-sbg 15857  df-subg 15990  df-cntz 16147  df-lsm 16449  df-cmn 16593  df-abl 16594  df-mgp 16929  df-ur 16941  df-rng 16985  df-oppr 17053  df-dvdsr 17071  df-unit 17072  df-invr 17102  df-drng 17178  df-lmod 17294  df-lss 17359  df-lsp 17398  df-lvec 17529  df-lshyp 33774  df-lfl 33855  df-lkr 33883
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator