Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islshp Structured version   Unicode version

Theorem islshp 32982
Description: The predicate "is a hyperplane" (of a left module or left vector space). (Contributed by NM, 29-Jun-2014.)
Hypotheses
Ref Expression
lshpset.v  |-  V  =  ( Base `  W
)
lshpset.n  |-  N  =  ( LSpan `  W )
lshpset.s  |-  S  =  ( LSubSp `  W )
lshpset.h  |-  H  =  (LSHyp `  W )
Assertion
Ref Expression
islshp  |-  ( W  e.  X  ->  ( U  e.  H  <->  ( U  e.  S  /\  U  =/= 
V  /\  E. v  e.  V  ( N `  ( U  u.  {
v } ) )  =  V ) ) )
Distinct variable groups:    v, V    v, W    v, U
Allowed substitution hints:    S( v)    H( v)    N( v)    X( v)

Proof of Theorem islshp
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 lshpset.v . . . 4  |-  V  =  ( Base `  W
)
2 lshpset.n . . . 4  |-  N  =  ( LSpan `  W )
3 lshpset.s . . . 4  |-  S  =  ( LSubSp `  W )
4 lshpset.h . . . 4  |-  H  =  (LSHyp `  W )
51, 2, 3, 4lshpset 32981 . . 3  |-  ( W  e.  X  ->  H  =  { s  e.  S  |  ( s  =/= 
V  /\  E. v  e.  V  ( N `  ( s  u.  {
v } ) )  =  V ) } )
65eleq2d 2524 . 2  |-  ( W  e.  X  ->  ( U  e.  H  <->  U  e.  { s  e.  S  | 
( s  =/=  V  /\  E. v  e.  V  ( N `  ( s  u.  { v } ) )  =  V ) } ) )
7 neeq1 2733 . . . . 5  |-  ( s  =  U  ->  (
s  =/=  V  <->  U  =/=  V ) )
8 uneq1 3614 . . . . . . . 8  |-  ( s  =  U  ->  (
s  u.  { v } )  =  ( U  u.  { v } ) )
98fveq2d 5806 . . . . . . 7  |-  ( s  =  U  ->  ( N `  ( s  u.  { v } ) )  =  ( N `
 ( U  u.  { v } ) ) )
109eqeq1d 2456 . . . . . 6  |-  ( s  =  U  ->  (
( N `  (
s  u.  { v } ) )  =  V  <->  ( N `  ( U  u.  { v } ) )  =  V ) )
1110rexbidv 2868 . . . . 5  |-  ( s  =  U  ->  ( E. v  e.  V  ( N `  ( s  u.  { v } ) )  =  V  <->  E. v  e.  V  ( N `  ( U  u.  { v } ) )  =  V ) )
127, 11anbi12d 710 . . . 4  |-  ( s  =  U  ->  (
( s  =/=  V  /\  E. v  e.  V  ( N `  ( s  u.  { v } ) )  =  V )  <->  ( U  =/= 
V  /\  E. v  e.  V  ( N `  ( U  u.  {
v } ) )  =  V ) ) )
1312elrab 3224 . . 3  |-  ( U  e.  { s  e.  S  |  ( s  =/=  V  /\  E. v  e.  V  ( N `  ( s  u.  { v } ) )  =  V ) }  <->  ( U  e.  S  /\  ( U  =/=  V  /\  E. v  e.  V  ( N `  ( U  u.  { v } ) )  =  V ) ) )
14 3anass 969 . . 3  |-  ( ( U  e.  S  /\  U  =/=  V  /\  E. v  e.  V  ( N `  ( U  u.  { v } ) )  =  V )  <-> 
( U  e.  S  /\  ( U  =/=  V  /\  E. v  e.  V  ( N `  ( U  u.  { v } ) )  =  V ) ) )
1513, 14bitr4i 252 . 2  |-  ( U  e.  { s  e.  S  |  ( s  =/=  V  /\  E. v  e.  V  ( N `  ( s  u.  { v } ) )  =  V ) }  <->  ( U  e.  S  /\  U  =/= 
V  /\  E. v  e.  V  ( N `  ( U  u.  {
v } ) )  =  V ) )
166, 15syl6bb 261 1  |-  ( W  e.  X  ->  ( U  e.  H  <->  ( U  e.  S  /\  U  =/= 
V  /\  E. v  e.  V  ( N `  ( U  u.  {
v } ) )  =  V ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2648   E.wrex 2800   {crab 2803    u. cun 3437   {csn 3988   ` cfv 5529   Basecbs 14295   LSubSpclss 17139   LSpanclspn 17178  LSHypclsh 32978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pr 4642
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-iota 5492  df-fun 5531  df-fv 5537  df-lshyp 32980
This theorem is referenced by:  islshpsm  32983  lshplss  32984  lshpne  32985  lshpnel2N  32988  lkrshp  33108  lshpset2N  33122  dochsatshp  35454
  Copyright terms: Public domain W3C validator