Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islsat Structured version   Unicode version

Theorem islsat 34005
Description: The predicate "is a 1-dim subspace (atom)" (of a left module or left vector space). (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
lsatset.v  |-  V  =  ( Base `  W
)
lsatset.n  |-  N  =  ( LSpan `  W )
lsatset.z  |-  .0.  =  ( 0g `  W )
lsatset.a  |-  A  =  (LSAtoms `  W )
Assertion
Ref Expression
islsat  |-  ( W  e.  X  ->  ( U  e.  A  <->  E. x  e.  ( V  \  {  .0.  } ) U  =  ( N `  {
x } ) ) )
Distinct variable groups:    x, W    x, X    x, N    x, U    x, V    x,  .0.
Allowed substitution hint:    A( x)

Proof of Theorem islsat
StepHypRef Expression
1 lsatset.v . . . 4  |-  V  =  ( Base `  W
)
2 lsatset.n . . . 4  |-  N  =  ( LSpan `  W )
3 lsatset.z . . . 4  |-  .0.  =  ( 0g `  W )
4 lsatset.a . . . 4  |-  A  =  (LSAtoms `  W )
51, 2, 3, 4lsatset 34004 . . 3  |-  ( W  e.  X  ->  A  =  ran  ( x  e.  ( V  \  {  .0.  } )  |->  ( N `
 { x }
) ) )
65eleq2d 2537 . 2  |-  ( W  e.  X  ->  ( U  e.  A  <->  U  e.  ran  ( x  e.  ( V  \  {  .0.  } )  |->  ( N `  { x } ) ) ) )
7 eqid 2467 . . 3  |-  ( x  e.  ( V  \  {  .0.  } )  |->  ( N `  { x } ) )  =  ( x  e.  ( V  \  {  .0.  } )  |->  ( N `  { x } ) )
8 fvex 5876 . . 3  |-  ( N `
 { x }
)  e.  _V
97, 8elrnmpti 5253 . 2  |-  ( U  e.  ran  ( x  e.  ( V  \  {  .0.  } )  |->  ( N `  { x } ) )  <->  E. x  e.  ( V  \  {  .0.  } ) U  =  ( N `  {
x } ) )
106, 9syl6bb 261 1  |-  ( W  e.  X  ->  ( U  e.  A  <->  E. x  e.  ( V  \  {  .0.  } ) U  =  ( N `  {
x } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1379    e. wcel 1767   E.wrex 2815    \ cdif 3473   {csn 4027    |-> cmpt 4505   ran crn 5000   ` cfv 5588   Basecbs 14493   0gc0g 14698   LSpanclspn 17429  LSAtomsclsa 33988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-fv 5596  df-lsatoms 33990
This theorem is referenced by:  lsatlspsn2  34006  lsatlspsn  34007  islsati  34008  lsateln0  34009  lsatn0  34013  lsatcmp  34017  lsmsat  34022  lsatfixedN  34023  islshpat  34031  lsatcv0  34045  lsat0cv  34047  lcv1  34055  l1cvpat  34068  dih1dimatlem  36343  dihlatat  36351  dochsatshp  36465
  Copyright terms: Public domain W3C validator