Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islsat Structured version   Unicode version

Theorem islsat 35113
Description: The predicate "is a 1-dim subspace (atom)" (of a left module or left vector space). (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
lsatset.v  |-  V  =  ( Base `  W
)
lsatset.n  |-  N  =  ( LSpan `  W )
lsatset.z  |-  .0.  =  ( 0g `  W )
lsatset.a  |-  A  =  (LSAtoms `  W )
Assertion
Ref Expression
islsat  |-  ( W  e.  X  ->  ( U  e.  A  <->  E. x  e.  ( V  \  {  .0.  } ) U  =  ( N `  {
x } ) ) )
Distinct variable groups:    x, W    x, X    x, N    x, U    x, V    x,  .0.
Allowed substitution hint:    A( x)

Proof of Theorem islsat
StepHypRef Expression
1 lsatset.v . . . 4  |-  V  =  ( Base `  W
)
2 lsatset.n . . . 4  |-  N  =  ( LSpan `  W )
3 lsatset.z . . . 4  |-  .0.  =  ( 0g `  W )
4 lsatset.a . . . 4  |-  A  =  (LSAtoms `  W )
51, 2, 3, 4lsatset 35112 . . 3  |-  ( W  e.  X  ->  A  =  ran  ( x  e.  ( V  \  {  .0.  } )  |->  ( N `
 { x }
) ) )
65eleq2d 2524 . 2  |-  ( W  e.  X  ->  ( U  e.  A  <->  U  e.  ran  ( x  e.  ( V  \  {  .0.  } )  |->  ( N `  { x } ) ) ) )
7 eqid 2454 . . 3  |-  ( x  e.  ( V  \  {  .0.  } )  |->  ( N `  { x } ) )  =  ( x  e.  ( V  \  {  .0.  } )  |->  ( N `  { x } ) )
8 fvex 5858 . . 3  |-  ( N `
 { x }
)  e.  _V
97, 8elrnmpti 5242 . 2  |-  ( U  e.  ran  ( x  e.  ( V  \  {  .0.  } )  |->  ( N `  { x } ) )  <->  E. x  e.  ( V  \  {  .0.  } ) U  =  ( N `  {
x } ) )
106, 9syl6bb 261 1  |-  ( W  e.  X  ->  ( U  e.  A  <->  E. x  e.  ( V  \  {  .0.  } ) U  =  ( N `  {
x } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1398    e. wcel 1823   E.wrex 2805    \ cdif 3458   {csn 4016    |-> cmpt 4497   ran crn 4989   ` cfv 5570   Basecbs 14716   0gc0g 14929   LSpanclspn 17812  LSAtomsclsa 35096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-fv 5578  df-lsatoms 35098
This theorem is referenced by:  lsatlspsn2  35114  lsatlspsn  35115  islsati  35116  lsateln0  35117  lsatn0  35121  lsatcmp  35125  lsmsat  35130  lsatfixedN  35131  islshpat  35139  lsatcv0  35153  lsat0cv  35155  lcv1  35163  l1cvpat  35176  dih1dimatlem  37453  dihlatat  37461  dochsatshp  37575
  Copyright terms: Public domain W3C validator