Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islpln5 Structured version   Unicode version

Theorem islpln5 35672
Description: The predicate "is a lattice plane" in terms of atoms. (Contributed by NM, 24-Jun-2012.)
Hypotheses
Ref Expression
islpln5.b  |-  B  =  ( Base `  K
)
islpln5.l  |-  .<_  =  ( le `  K )
islpln5.j  |-  .\/  =  ( join `  K )
islpln5.a  |-  A  =  ( Atoms `  K )
islpln5.p  |-  P  =  ( LPlanes `  K )
Assertion
Ref Expression
islpln5  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( X  e.  P  <->  E. p  e.  A  E. q  e.  A  E. r  e.  A  (
p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  X  =  ( (
p  .\/  q )  .\/  r ) ) ) )
Distinct variable groups:    q, p, r, A    B, p, q, r    .\/ , p, q, r    K, p, q, r    .<_ , p, q, r    X, p, q, r
Allowed substitution hints:    P( r, q, p)

Proof of Theorem islpln5
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 islpln5.b . . 3  |-  B  =  ( Base `  K
)
2 islpln5.l . . 3  |-  .<_  =  ( le `  K )
3 islpln5.j . . 3  |-  .\/  =  ( join `  K )
4 islpln5.a . . 3  |-  A  =  ( Atoms `  K )
5 eqid 2382 . . 3  |-  ( LLines `  K )  =  (
LLines `  K )
6 islpln5.p . . 3  |-  P  =  ( LPlanes `  K )
71, 2, 3, 4, 5, 6islpln3 35670 . 2  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( X  e.  P  <->  E. y  e.  ( LLines `  K ) E. r  e.  A  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) ) )
8 rexcom4 3054 . . . . . . 7  |-  ( E. q  e.  A  E. y E. r  e.  A  ( ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  ( p  =/=  q  /\  y  =  ( p  .\/  q
) ) )  <->  E. y E. q  e.  A  E. r  e.  A  ( ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  ( p  =/=  q  /\  y  =  ( p  .\/  q
) ) ) )
98rexbii 2884 . . . . . 6  |-  ( E. p  e.  A  E. q  e.  A  E. y E. r  e.  A  ( ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  ( p  =/=  q  /\  y  =  ( p  .\/  q
) ) )  <->  E. p  e.  A  E. y E. q  e.  A  E. r  e.  A  ( ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  ( p  =/=  q  /\  y  =  ( p  .\/  q
) ) ) )
10 rexcom4 3054 . . . . . 6  |-  ( E. p  e.  A  E. y E. q  e.  A  E. r  e.  A  ( ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  ( p  =/=  q  /\  y  =  ( p  .\/  q
) ) )  <->  E. y E. p  e.  A  E. q  e.  A  E. r  e.  A  ( ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  ( p  =/=  q  /\  y  =  ( p  .\/  q
) ) ) )
119, 10bitri 249 . . . . 5  |-  ( E. p  e.  A  E. q  e.  A  E. y E. r  e.  A  ( ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  ( p  =/=  q  /\  y  =  ( p  .\/  q
) ) )  <->  E. y E. p  e.  A  E. q  e.  A  E. r  e.  A  ( ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  ( p  =/=  q  /\  y  =  ( p  .\/  q
) ) ) )
12 simpll 751 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( p  e.  A  /\  q  e.  A ) )  ->  K  e.  HL )
13 simprl 754 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( p  e.  A  /\  q  e.  A ) )  ->  p  e.  A )
14 simprr 755 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( p  e.  A  /\  q  e.  A ) )  -> 
q  e.  A )
151, 3, 4hlatjcl 35504 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  ->  ( p  .\/  q
)  e.  B )
1612, 13, 14, 15syl3anc 1226 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( p  e.  A  /\  q  e.  A ) )  -> 
( p  .\/  q
)  e.  B )
1716biantrurd 506 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( p  e.  A  /\  q  e.  A ) )  -> 
( E. r  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p  .\/  q
)  /\  X  =  ( ( p  .\/  q )  .\/  r
) )  <->  ( (
p  .\/  q )  e.  B  /\  E. r  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p  .\/  q
)  /\  X  =  ( ( p  .\/  q )  .\/  r
) ) ) ) )
18 r19.41v 2934 . . . . . . . . . 10  |-  ( E. r  e.  A  ( ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  (
p  =/=  q  /\  y  =  ( p  .\/  q ) ) )  <-> 
( E. r  e.  A  ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  ( p  =/=  q  /\  y  =  ( p  .\/  q
) ) ) )
19 an13 797 . . . . . . . . . 10  |-  ( ( E. r  e.  A  ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  (
p  =/=  q  /\  y  =  ( p  .\/  q ) ) )  <-> 
( y  =  ( p  .\/  q )  /\  ( p  =/=  q  /\  E. r  e.  A  ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) ) ) ) )
2018, 19bitri 249 . . . . . . . . 9  |-  ( E. r  e.  A  ( ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  (
p  =/=  q  /\  y  =  ( p  .\/  q ) ) )  <-> 
( y  =  ( p  .\/  q )  /\  ( p  =/=  q  /\  E. r  e.  A  ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) ) ) ) )
2120exbii 1675 . . . . . . . 8  |-  ( E. y E. r  e.  A  ( ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  ( p  =/=  q  /\  y  =  ( p  .\/  q
) ) )  <->  E. y
( y  =  ( p  .\/  q )  /\  ( p  =/=  q  /\  E. r  e.  A  ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) ) ) ) )
22 ovex 6224 . . . . . . . . 9  |-  ( p 
.\/  q )  e. 
_V
23 an12 795 . . . . . . . . . . . 12  |-  ( ( p  =/=  q  /\  ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) ) )  <->  ( y  e.  B  /\  (
p  =/=  q  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) ) ) )
24 eleq1 2454 . . . . . . . . . . . . 13  |-  ( y  =  ( p  .\/  q )  ->  (
y  e.  B  <->  ( p  .\/  q )  e.  B
) )
25 breq2 4371 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( p  .\/  q )  ->  (
r  .<_  y  <->  r  .<_  ( p  .\/  q ) ) )
2625notbid 292 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( p  .\/  q )  ->  ( -.  r  .<_  y  <->  -.  r  .<_  ( p  .\/  q
) ) )
27 oveq1 6203 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( p  .\/  q )  ->  (
y  .\/  r )  =  ( ( p 
.\/  q )  .\/  r ) )
2827eqeq2d 2396 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( p  .\/  q )  ->  ( X  =  ( y  .\/  r )  <->  X  =  ( ( p  .\/  q )  .\/  r
) ) )
2926, 28anbi12d 708 . . . . . . . . . . . . . . 15  |-  ( y  =  ( p  .\/  q )  ->  (
( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) )  <->  ( -.  r  .<_  ( p  .\/  q
)  /\  X  =  ( ( p  .\/  q )  .\/  r
) ) ) )
3029anbi2d 701 . . . . . . . . . . . . . 14  |-  ( y  =  ( p  .\/  q )  ->  (
( p  =/=  q  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  <->  ( p  =/=  q  /\  ( -.  r  .<_  ( p 
.\/  q )  /\  X  =  ( (
p  .\/  q )  .\/  r ) ) ) ) )
31 3anass 975 . . . . . . . . . . . . . 14  |-  ( ( p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  X  =  ( (
p  .\/  q )  .\/  r ) )  <->  ( p  =/=  q  /\  ( -.  r  .<_  ( p 
.\/  q )  /\  X  =  ( (
p  .\/  q )  .\/  r ) ) ) )
3230, 31syl6bbr 263 . . . . . . . . . . . . 13  |-  ( y  =  ( p  .\/  q )  ->  (
( p  =/=  q  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  <->  ( p  =/=  q  /\  -.  r  .<_  ( p  .\/  q
)  /\  X  =  ( ( p  .\/  q )  .\/  r
) ) ) )
3324, 32anbi12d 708 . . . . . . . . . . . 12  |-  ( y  =  ( p  .\/  q )  ->  (
( y  e.  B  /\  ( p  =/=  q  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) ) )  <->  ( (
p  .\/  q )  e.  B  /\  (
p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  X  =  ( (
p  .\/  q )  .\/  r ) ) ) ) )
3423, 33syl5bb 257 . . . . . . . . . . 11  |-  ( y  =  ( p  .\/  q )  ->  (
( p  =/=  q  /\  ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) ) )  <->  ( (
p  .\/  q )  e.  B  /\  (
p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  X  =  ( (
p  .\/  q )  .\/  r ) ) ) ) )
3534rexbidv 2893 . . . . . . . . . 10  |-  ( y  =  ( p  .\/  q )  ->  ( E. r  e.  A  ( p  =/=  q  /\  ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) ) )  <->  E. r  e.  A  ( (
p  .\/  q )  e.  B  /\  (
p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  X  =  ( (
p  .\/  q )  .\/  r ) ) ) ) )
36 r19.42v 2937 . . . . . . . . . 10  |-  ( E. r  e.  A  ( p  =/=  q  /\  ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) ) )  <->  ( p  =/=  q  /\  E. r  e.  A  ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) ) ) )
37 r19.42v 2937 . . . . . . . . . 10  |-  ( E. r  e.  A  ( ( p  .\/  q
)  e.  B  /\  ( p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  X  =  ( (
p  .\/  q )  .\/  r ) ) )  <-> 
( ( p  .\/  q )  e.  B  /\  E. r  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  X  =  ( (
p  .\/  q )  .\/  r ) ) ) )
3835, 36, 373bitr3g 287 . . . . . . . . 9  |-  ( y  =  ( p  .\/  q )  ->  (
( p  =/=  q  /\  E. r  e.  A  ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) ) )  <->  ( (
p  .\/  q )  e.  B  /\  E. r  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p  .\/  q
)  /\  X  =  ( ( p  .\/  q )  .\/  r
) ) ) ) )
3922, 38ceqsexv 3071 . . . . . . . 8  |-  ( E. y ( y  =  ( p  .\/  q
)  /\  ( p  =/=  q  /\  E. r  e.  A  ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) ) ) )  <->  ( (
p  .\/  q )  e.  B  /\  E. r  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p  .\/  q
)  /\  X  =  ( ( p  .\/  q )  .\/  r
) ) ) )
4021, 39bitri 249 . . . . . . 7  |-  ( E. y E. r  e.  A  ( ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  ( p  =/=  q  /\  y  =  ( p  .\/  q
) ) )  <->  ( (
p  .\/  q )  e.  B  /\  E. r  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p  .\/  q
)  /\  X  =  ( ( p  .\/  q )  .\/  r
) ) ) )
4117, 40syl6rbbr 264 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( p  e.  A  /\  q  e.  A ) )  -> 
( E. y E. r  e.  A  ( ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  (
p  =/=  q  /\  y  =  ( p  .\/  q ) ) )  <->  E. r  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  X  =  ( (
p  .\/  q )  .\/  r ) ) ) )
42412rexbidva 2899 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( E. p  e.  A  E. q  e.  A  E. y E. r  e.  A  ( ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  (
p  =/=  q  /\  y  =  ( p  .\/  q ) ) )  <->  E. p  e.  A  E. q  e.  A  E. r  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  X  =  ( (
p  .\/  q )  .\/  r ) ) ) )
4311, 42syl5rbbr 260 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( E. p  e.  A  E. q  e.  A  E. r  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p  .\/  q
)  /\  X  =  ( ( p  .\/  q )  .\/  r
) )  <->  E. y E. p  e.  A  E. q  e.  A  E. r  e.  A  ( ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  ( p  =/=  q  /\  y  =  ( p  .\/  q
) ) ) ) )
441, 3, 4, 5islln2 35648 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  (
y  e.  ( LLines `  K )  <->  ( y  e.  B  /\  E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  y  =  ( p  .\/  q ) ) ) ) )
4544adantr 463 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( y  e.  (
LLines `  K )  <->  ( y  e.  B  /\  E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  y  =  ( p  .\/  q ) ) ) ) )
4645anbi1d 702 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( ( y  e.  ( LLines `  K )  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  <->  ( (
y  e.  B  /\  E. p  e.  A  E. q  e.  A  (
p  =/=  q  /\  y  =  ( p  .\/  q ) ) )  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r
) ) ) ) )
47 r19.42v 2937 . . . . . . . . . 10  |-  ( E. p  e.  A  ( ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  E. q  e.  A  (
p  =/=  q  /\  y  =  ( p  .\/  q ) ) )  <-> 
( ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  y  =  ( p  .\/  q
) ) ) )
48 r19.42v 2937 . . . . . . . . . . 11  |-  ( E. q  e.  A  ( ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  (
p  =/=  q  /\  y  =  ( p  .\/  q ) ) )  <-> 
( ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  E. q  e.  A  ( p  =/=  q  /\  y  =  ( p  .\/  q
) ) ) )
4948rexbii 2884 . . . . . . . . . 10  |-  ( E. p  e.  A  E. q  e.  A  (
( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  (
p  =/=  q  /\  y  =  ( p  .\/  q ) ) )  <->  E. p  e.  A  ( ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  E. q  e.  A  ( p  =/=  q  /\  y  =  ( p  .\/  q
) ) ) )
50 an32 796 . . . . . . . . . 10  |-  ( ( ( y  e.  B  /\  E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  y  =  (
p  .\/  q )
) )  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  <-> 
( ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  y  =  ( p  .\/  q
) ) ) )
5147, 49, 503bitr4ri 278 . . . . . . . . 9  |-  ( ( ( y  e.  B  /\  E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  y  =  (
p  .\/  q )
) )  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  <->  E. p  e.  A  E. q  e.  A  ( ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  ( p  =/=  q  /\  y  =  ( p  .\/  q
) ) ) )
5246, 51syl6bb 261 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( ( y  e.  ( LLines `  K )  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  <->  E. p  e.  A  E. q  e.  A  ( (
y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  (
p  =/=  q  /\  y  =  ( p  .\/  q ) ) ) ) )
5352rexbidv 2893 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( E. r  e.  A  ( y  e.  ( LLines `  K )  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  <->  E. r  e.  A  E. p  e.  A  E. q  e.  A  ( (
y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  (
p  =/=  q  /\  y  =  ( p  .\/  q ) ) ) ) )
54 rexcom 2944 . . . . . . . . 9  |-  ( E. q  e.  A  E. r  e.  A  (
( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  (
p  =/=  q  /\  y  =  ( p  .\/  q ) ) )  <->  E. r  e.  A  E. q  e.  A  ( ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  ( p  =/=  q  /\  y  =  ( p  .\/  q
) ) ) )
5554rexbii 2884 . . . . . . . 8  |-  ( E. p  e.  A  E. q  e.  A  E. r  e.  A  (
( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  (
p  =/=  q  /\  y  =  ( p  .\/  q ) ) )  <->  E. p  e.  A  E. r  e.  A  E. q  e.  A  ( ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  ( p  =/=  q  /\  y  =  ( p  .\/  q
) ) ) )
56 rexcom 2944 . . . . . . . 8  |-  ( E. p  e.  A  E. r  e.  A  E. q  e.  A  (
( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  (
p  =/=  q  /\  y  =  ( p  .\/  q ) ) )  <->  E. r  e.  A  E. p  e.  A  E. q  e.  A  ( ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  ( p  =/=  q  /\  y  =  ( p  .\/  q
) ) ) )
5755, 56bitri 249 . . . . . . 7  |-  ( E. p  e.  A  E. q  e.  A  E. r  e.  A  (
( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  (
p  =/=  q  /\  y  =  ( p  .\/  q ) ) )  <->  E. r  e.  A  E. p  e.  A  E. q  e.  A  ( ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  ( p  =/=  q  /\  y  =  ( p  .\/  q
) ) ) )
5853, 57syl6rbbr 264 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( E. p  e.  A  E. q  e.  A  E. r  e.  A  ( ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  ( p  =/=  q  /\  y  =  ( p  .\/  q
) ) )  <->  E. r  e.  A  ( y  e.  ( LLines `  K )  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) ) ) )
59 r19.42v 2937 . . . . . 6  |-  ( E. r  e.  A  ( y  e.  ( LLines `  K )  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  <-> 
( y  e.  (
LLines `  K )  /\  E. r  e.  A  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) ) )
6058, 59syl6bb 261 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( E. p  e.  A  E. q  e.  A  E. r  e.  A  ( ( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  ( p  =/=  q  /\  y  =  ( p  .\/  q
) ) )  <->  ( y  e.  ( LLines `  K )  /\  E. r  e.  A  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) ) ) )
6160exbidv 1722 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( E. y E. p  e.  A  E. q  e.  A  E. r  e.  A  (
( y  e.  B  /\  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) )  /\  (
p  =/=  q  /\  y  =  ( p  .\/  q ) ) )  <->  E. y ( y  e.  ( LLines `  K )  /\  E. r  e.  A  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) ) ) )
6243, 61bitrd 253 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( E. p  e.  A  E. q  e.  A  E. r  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p  .\/  q
)  /\  X  =  ( ( p  .\/  q )  .\/  r
) )  <->  E. y
( y  e.  (
LLines `  K )  /\  E. r  e.  A  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) ) ) )
63 df-rex 2738 . . 3  |-  ( E. y  e.  ( LLines `  K ) E. r  e.  A  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) )  <->  E. y
( y  e.  (
LLines `  K )  /\  E. r  e.  A  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) ) ) )
6462, 63syl6rbbr 264 . 2  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( E. y  e.  ( LLines `  K ) E. r  e.  A  ( -.  r  .<_  y  /\  X  =  ( y  .\/  r ) )  <->  E. p  e.  A  E. q  e.  A  E. r  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  X  =  ( (
p  .\/  q )  .\/  r ) ) ) )
657, 64bitrd 253 1  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( X  e.  P  <->  E. p  e.  A  E. q  e.  A  E. r  e.  A  (
p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  X  =  ( (
p  .\/  q )  .\/  r ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1399   E.wex 1620    e. wcel 1826    =/= wne 2577   E.wrex 2733   class class class wbr 4367   ` cfv 5496  (class class class)co 6196   Basecbs 14634   lecple 14709   joincjn 15690   Atomscatm 35401   HLchlt 35488   LLinesclln 35628   LPlanesclpl 35629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-reu 2739  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-id 4709  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-oprab 6200  df-preset 15674  df-poset 15692  df-plt 15705  df-lub 15721  df-glb 15722  df-join 15723  df-meet 15724  df-p0 15786  df-lat 15793  df-clat 15855  df-oposet 35314  df-ol 35316  df-oml 35317  df-covers 35404  df-ats 35405  df-atl 35436  df-cvlat 35460  df-hlat 35489  df-llines 35635  df-lplanes 35636
This theorem is referenced by:  islpln2  35673  lplni2  35674
  Copyright terms: Public domain W3C validator