MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islpir Structured version   Unicode version

Theorem islpir 17455
Description: Principal ideal rings are where all ideals are principal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lpival.p  |-  P  =  (LPIdeal `  R )
lpiss.u  |-  U  =  (LIdeal `  R )
Assertion
Ref Expression
islpir  |-  ( R  e. LPIR 
<->  ( R  e.  Ring  /\  U  =  P ) )

Proof of Theorem islpir
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 fveq2 5800 . . . 4  |-  ( r  =  R  ->  (LIdeal `  r )  =  (LIdeal `  R ) )
2 fveq2 5800 . . . 4  |-  ( r  =  R  ->  (LPIdeal `  r )  =  (LPIdeal `  R ) )
31, 2eqeq12d 2476 . . 3  |-  ( r  =  R  ->  (
(LIdeal `  r )  =  (LPIdeal `  r )  <->  (LIdeal `  R )  =  (LPIdeal `  R ) ) )
4 lpiss.u . . . 4  |-  U  =  (LIdeal `  R )
5 lpival.p . . . 4  |-  P  =  (LPIdeal `  R )
64, 5eqeq12i 2474 . . 3  |-  ( U  =  P  <->  (LIdeal `  R
)  =  (LPIdeal `  R
) )
73, 6syl6bbr 263 . 2  |-  ( r  =  R  ->  (
(LIdeal `  r )  =  (LPIdeal `  r )  <->  U  =  P ) )
8 df-lpir 17450 . 2  |- LPIR  =  {
r  e.  Ring  |  (LIdeal `  r )  =  (LPIdeal `  r ) }
97, 8elrab2 3226 1  |-  ( R  e. LPIR 
<->  ( R  e.  Ring  /\  U  =  P ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   ` cfv 5527   Ringcrg 16769  LIdealclidl 17375  LPIdealclpidl 17447  LPIRclpir 17448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-rex 2805  df-rab 2808  df-v 3080  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-br 4402  df-iota 5490  df-fv 5535  df-lpir 17450
This theorem is referenced by:  islpir2  17457  lpirrng  17458  lpirlnr  29622
  Copyright terms: Public domain W3C validator