MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islocfin Structured version   Unicode version

Theorem islocfin 20184
Description: The statement "is a locally finite cover." (Contributed by Jeff Hankins, 21-Jan-2010.)
Hypotheses
Ref Expression
islocfin.1  |-  X  = 
U. J
islocfin.2  |-  Y  = 
U. A
Assertion
Ref Expression
islocfin  |-  ( A  e.  ( LocFin `  J
)  <->  ( J  e. 
Top  /\  X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
Distinct variable groups:    n, s, x, A    n, J, x   
x, X
Allowed substitution hints:    J( s)    X( n, s)    Y( x, n, s)

Proof of Theorem islocfin
Dummy variables  j 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-locfin 20174 . . . . 5  |-  LocFin  =  ( j  e.  Top  |->  { y  |  ( U. j  =  U. y  /\  A. x  e.  U. j E. n  e.  j  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) } )
21dmmptss 5486 . . . 4  |-  dom  LocFin  C_  Top
3 elfvdm 5874 . . . 4  |-  ( A  e.  ( LocFin `  J
)  ->  J  e.  dom  LocFin )
42, 3sseldi 3487 . . 3  |-  ( A  e.  ( LocFin `  J
)  ->  J  e.  Top )
5 eqimss2 3542 . . . . . . . . . . 11  |-  ( X  =  U. y  ->  U. y  C_  X )
6 sspwuni 4404 . . . . . . . . . . 11  |-  ( y 
C_  ~P X  <->  U. y  C_  X )
75, 6sylibr 212 . . . . . . . . . 10  |-  ( X  =  U. y  -> 
y  C_  ~P X
)
8 selpw 4006 . . . . . . . . . 10  |-  ( y  e.  ~P ~P X  <->  y 
C_  ~P X )
97, 8sylibr 212 . . . . . . . . 9  |-  ( X  =  U. y  -> 
y  e.  ~P ~P X )
109adantr 463 . . . . . . . 8  |-  ( ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) )  ->  y  e.  ~P ~P X )
1110abssi 3561 . . . . . . 7  |-  { y  |  ( X  = 
U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) }  C_  ~P ~P X
12 islocfin.1 . . . . . . . . 9  |-  X  = 
U. J
1312topopn 19582 . . . . . . . 8  |-  ( J  e.  Top  ->  X  e.  J )
14 pwexg 4621 . . . . . . . 8  |-  ( X  e.  J  ->  ~P X  e.  _V )
15 pwexg 4621 . . . . . . . 8  |-  ( ~P X  e.  _V  ->  ~P ~P X  e.  _V )
1613, 14, 153syl 20 . . . . . . 7  |-  ( J  e.  Top  ->  ~P ~P X  e.  _V )
17 ssexg 4583 . . . . . . 7  |-  ( ( { y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) }  C_  ~P ~P X  /\  ~P ~P X  e.  _V )  ->  { y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) }  e.  _V )
1811, 16, 17sylancr 661 . . . . . 6  |-  ( J  e.  Top  ->  { y  |  ( X  = 
U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) }  e.  _V )
19 unieq 4243 . . . . . . . . . . 11  |-  ( j  =  J  ->  U. j  =  U. J )
2019, 12syl6eqr 2513 . . . . . . . . . 10  |-  ( j  =  J  ->  U. j  =  X )
2120eqeq1d 2456 . . . . . . . . 9  |-  ( j  =  J  ->  ( U. j  =  U. y 
<->  X  =  U. y
) )
22 rexeq 3052 . . . . . . . . . 10  |-  ( j  =  J  ->  ( E. n  e.  j 
( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin )  <->  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
2320, 22raleqbidv 3065 . . . . . . . . 9  |-  ( j  =  J  ->  ( A. x  e.  U. j E. n  e.  j 
( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin )  <->  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
2421, 23anbi12d 708 . . . . . . . 8  |-  ( j  =  J  ->  (
( U. j  = 
U. y  /\  A. x  e.  U. j E. n  e.  j 
( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) )  <->  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) ) )
2524abbidv 2590 . . . . . . 7  |-  ( j  =  J  ->  { y  |  ( U. j  =  U. y  /\  A. x  e.  U. j E. n  e.  j 
( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) }  =  { y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) } )
2625, 1fvmptg 5929 . . . . . 6  |-  ( ( J  e.  Top  /\  { y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) }  e.  _V )  ->  ( LocFin `  J )  =  {
y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) } )
2718, 26mpdan 666 . . . . 5  |-  ( J  e.  Top  ->  ( LocFin `
 J )  =  { y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) } )
2827eleq2d 2524 . . . 4  |-  ( J  e.  Top  ->  ( A  e.  ( LocFin `  J )  <->  A  e.  { y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) } ) )
29 elex 3115 . . . . . 6  |-  ( A  e.  { y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) }  ->  A  e.  _V )
3029adantl 464 . . . . 5  |-  ( ( J  e.  Top  /\  A  e.  { y  |  ( X  = 
U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) } )  ->  A  e.  _V )
31 simpr 459 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  X  =  Y )  ->  X  =  Y )
32 islocfin.2 . . . . . . . . . 10  |-  Y  = 
U. A
3331, 32syl6eq 2511 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  X  =  Y )  ->  X  =  U. A
)
3413adantr 463 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  X  =  Y )  ->  X  e.  J )
3533, 34eqeltrrd 2543 . . . . . . . 8  |-  ( ( J  e.  Top  /\  X  =  Y )  ->  U. A  e.  J
)
36 elex 3115 . . . . . . . 8  |-  ( U. A  e.  J  ->  U. A  e.  _V )
3735, 36syl 16 . . . . . . 7  |-  ( ( J  e.  Top  /\  X  =  Y )  ->  U. A  e.  _V )
38 uniexb 6583 . . . . . . 7  |-  ( A  e.  _V  <->  U. A  e. 
_V )
3937, 38sylibr 212 . . . . . 6  |-  ( ( J  e.  Top  /\  X  =  Y )  ->  A  e.  _V )
4039adantrr 714 . . . . 5  |-  ( ( J  e.  Top  /\  ( X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )  ->  A  e.  _V )
41 unieq 4243 . . . . . . . . 9  |-  ( y  =  A  ->  U. y  =  U. A )
4241, 32syl6eqr 2513 . . . . . . . 8  |-  ( y  =  A  ->  U. y  =  Y )
4342eqeq2d 2468 . . . . . . 7  |-  ( y  =  A  ->  ( X  =  U. y  <->  X  =  Y ) )
44 rabeq 3100 . . . . . . . . . . 11  |-  ( y  =  A  ->  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  =  {
s  e.  A  | 
( s  i^i  n
)  =/=  (/) } )
4544eleq1d 2523 . . . . . . . . . 10  |-  ( y  =  A  ->  ( { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin 
<->  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) )
4645anbi2d 701 . . . . . . . . 9  |-  ( y  =  A  ->  (
( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin )  <->  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
4746rexbidv 2965 . . . . . . . 8  |-  ( y  =  A  ->  ( E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin )  <->  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
4847ralbidv 2893 . . . . . . 7  |-  ( y  =  A  ->  ( A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin )  <->  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
4943, 48anbi12d 708 . . . . . 6  |-  ( y  =  A  ->  (
( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) )  <->  ( X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) ) )
5049elabg 3244 . . . . 5  |-  ( A  e.  _V  ->  ( A  e.  { y  |  ( X  = 
U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) }  <->  ( X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) ) )
5130, 40, 50pm5.21nd 898 . . . 4  |-  ( J  e.  Top  ->  ( A  e.  { y  |  ( X  = 
U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) }  <->  ( X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) ) )
5228, 51bitrd 253 . . 3  |-  ( J  e.  Top  ->  ( A  e.  ( LocFin `  J )  <->  ( X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) ) )
534, 52biadan2 640 . 2  |-  ( A  e.  ( LocFin `  J
)  <->  ( J  e. 
Top  /\  ( X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) ) )
54 3anass 975 . 2  |-  ( ( J  e.  Top  /\  X  =  Y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  A  | 
( s  i^i  n
)  =/=  (/) }  e.  Fin ) )  <->  ( J  e.  Top  /\  ( X  =  Y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  A  | 
( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) ) )
5553, 54bitr4i 252 1  |-  ( A  e.  ( LocFin `  J
)  <->  ( J  e. 
Top  /\  X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   {cab 2439    =/= wne 2649   A.wral 2804   E.wrex 2805   {crab 2808   _Vcvv 3106    i^i cin 3460    C_ wss 3461   (/)c0 3783   ~Pcpw 3999   U.cuni 4235   dom cdm 4988   ` cfv 5570   Fincfn 7509   Topctop 19561   LocFinclocfin 20171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fv 5578  df-top 19566  df-locfin 20174
This theorem is referenced by:  finlocfin  20187  locfintop  20188  locfinbas  20189  locfinnei  20190  lfinun  20192  dissnlocfin  20196  locfindis  20197  locfincf  20198  locfinreflem  28078  locfinref  28079
  Copyright terms: Public domain W3C validator