MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islocfin Structured version   Unicode version

Theorem islocfin 20474
Description: The statement "is a locally finite cover." (Contributed by Jeff Hankins, 21-Jan-2010.)
Hypotheses
Ref Expression
islocfin.1  |-  X  = 
U. J
islocfin.2  |-  Y  = 
U. A
Assertion
Ref Expression
islocfin  |-  ( A  e.  ( LocFin `  J
)  <->  ( J  e. 
Top  /\  X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
Distinct variable groups:    n, s, x, A    n, J, x   
x, X
Allowed substitution hints:    J( s)    X( n, s)    Y( x, n, s)

Proof of Theorem islocfin
Dummy variables  j 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-locfin 20464 . . . . 5  |-  LocFin  =  ( j  e.  Top  |->  { y  |  ( U. j  =  U. y  /\  A. x  e.  U. j E. n  e.  j  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) } )
21dmmptss 5293 . . . 4  |-  dom  LocFin  C_  Top
3 elfvdm 5851 . . . 4  |-  ( A  e.  ( LocFin `  J
)  ->  J  e.  dom  LocFin )
42, 3sseldi 3405 . . 3  |-  ( A  e.  ( LocFin `  J
)  ->  J  e.  Top )
5 eqimss2 3460 . . . . . . . . . . 11  |-  ( X  =  U. y  ->  U. y  C_  X )
6 sspwuni 4331 . . . . . . . . . . 11  |-  ( y 
C_  ~P X  <->  U. y  C_  X )
75, 6sylibr 215 . . . . . . . . . 10  |-  ( X  =  U. y  -> 
y  C_  ~P X
)
8 selpw 3931 . . . . . . . . . 10  |-  ( y  e.  ~P ~P X  <->  y 
C_  ~P X )
97, 8sylibr 215 . . . . . . . . 9  |-  ( X  =  U. y  -> 
y  e.  ~P ~P X )
109adantr 466 . . . . . . . 8  |-  ( ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) )  ->  y  e.  ~P ~P X )
1110abssi 3479 . . . . . . 7  |-  { y  |  ( X  = 
U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) }  C_  ~P ~P X
12 islocfin.1 . . . . . . . . 9  |-  X  = 
U. J
1312topopn 19878 . . . . . . . 8  |-  ( J  e.  Top  ->  X  e.  J )
14 pwexg 4551 . . . . . . . 8  |-  ( X  e.  J  ->  ~P X  e.  _V )
15 pwexg 4551 . . . . . . . 8  |-  ( ~P X  e.  _V  ->  ~P ~P X  e.  _V )
1613, 14, 153syl 18 . . . . . . 7  |-  ( J  e.  Top  ->  ~P ~P X  e.  _V )
17 ssexg 4513 . . . . . . 7  |-  ( ( { y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) }  C_  ~P ~P X  /\  ~P ~P X  e.  _V )  ->  { y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) }  e.  _V )
1811, 16, 17sylancr 667 . . . . . 6  |-  ( J  e.  Top  ->  { y  |  ( X  = 
U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) }  e.  _V )
19 unieq 4170 . . . . . . . . . . 11  |-  ( j  =  J  ->  U. j  =  U. J )
2019, 12syl6eqr 2480 . . . . . . . . . 10  |-  ( j  =  J  ->  U. j  =  X )
2120eqeq1d 2430 . . . . . . . . 9  |-  ( j  =  J  ->  ( U. j  =  U. y 
<->  X  =  U. y
) )
22 rexeq 2965 . . . . . . . . . 10  |-  ( j  =  J  ->  ( E. n  e.  j 
( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin )  <->  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
2320, 22raleqbidv 2978 . . . . . . . . 9  |-  ( j  =  J  ->  ( A. x  e.  U. j E. n  e.  j 
( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin )  <->  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
2421, 23anbi12d 715 . . . . . . . 8  |-  ( j  =  J  ->  (
( U. j  = 
U. y  /\  A. x  e.  U. j E. n  e.  j 
( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) )  <->  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) ) )
2524abbidv 2546 . . . . . . 7  |-  ( j  =  J  ->  { y  |  ( U. j  =  U. y  /\  A. x  e.  U. j E. n  e.  j 
( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) }  =  { y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) } )
2625, 1fvmptg 5906 . . . . . 6  |-  ( ( J  e.  Top  /\  { y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) }  e.  _V )  ->  ( LocFin `  J )  =  {
y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) } )
2718, 26mpdan 672 . . . . 5  |-  ( J  e.  Top  ->  ( LocFin `
 J )  =  { y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) } )
2827eleq2d 2491 . . . 4  |-  ( J  e.  Top  ->  ( A  e.  ( LocFin `  J )  <->  A  e.  { y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) } ) )
29 elex 3031 . . . . . 6  |-  ( A  e.  { y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) }  ->  A  e.  _V )
3029adantl 467 . . . . 5  |-  ( ( J  e.  Top  /\  A  e.  { y  |  ( X  = 
U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) } )  ->  A  e.  _V )
31 simpr 462 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  X  =  Y )  ->  X  =  Y )
32 islocfin.2 . . . . . . . . . 10  |-  Y  = 
U. A
3331, 32syl6eq 2478 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  X  =  Y )  ->  X  =  U. A
)
3413adantr 466 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  X  =  Y )  ->  X  e.  J )
3533, 34eqeltrrd 2507 . . . . . . . 8  |-  ( ( J  e.  Top  /\  X  =  Y )  ->  U. A  e.  J
)
36 elex 3031 . . . . . . . 8  |-  ( U. A  e.  J  ->  U. A  e.  _V )
3735, 36syl 17 . . . . . . 7  |-  ( ( J  e.  Top  /\  X  =  Y )  ->  U. A  e.  _V )
38 uniexb 6559 . . . . . . 7  |-  ( A  e.  _V  <->  U. A  e. 
_V )
3937, 38sylibr 215 . . . . . 6  |-  ( ( J  e.  Top  /\  X  =  Y )  ->  A  e.  _V )
4039adantrr 721 . . . . 5  |-  ( ( J  e.  Top  /\  ( X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )  ->  A  e.  _V )
41 unieq 4170 . . . . . . . . 9  |-  ( y  =  A  ->  U. y  =  U. A )
4241, 32syl6eqr 2480 . . . . . . . 8  |-  ( y  =  A  ->  U. y  =  Y )
4342eqeq2d 2438 . . . . . . 7  |-  ( y  =  A  ->  ( X  =  U. y  <->  X  =  Y ) )
44 rabeq 3015 . . . . . . . . . . 11  |-  ( y  =  A  ->  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  =  {
s  e.  A  | 
( s  i^i  n
)  =/=  (/) } )
4544eleq1d 2490 . . . . . . . . . 10  |-  ( y  =  A  ->  ( { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin 
<->  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) )
4645anbi2d 708 . . . . . . . . 9  |-  ( y  =  A  ->  (
( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin )  <->  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
4746rexbidv 2878 . . . . . . . 8  |-  ( y  =  A  ->  ( E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin )  <->  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
4847ralbidv 2804 . . . . . . 7  |-  ( y  =  A  ->  ( A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin )  <->  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
4943, 48anbi12d 715 . . . . . 6  |-  ( y  =  A  ->  (
( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) )  <->  ( X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) ) )
5049elabg 3161 . . . . 5  |-  ( A  e.  _V  ->  ( A  e.  { y  |  ( X  = 
U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) }  <->  ( X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) ) )
5130, 40, 50pm5.21nd 908 . . . 4  |-  ( J  e.  Top  ->  ( A  e.  { y  |  ( X  = 
U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) }  <->  ( X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) ) )
5228, 51bitrd 256 . . 3  |-  ( J  e.  Top  ->  ( A  e.  ( LocFin `  J )  <->  ( X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) ) )
534, 52biadan2 646 . 2  |-  ( A  e.  ( LocFin `  J
)  <->  ( J  e. 
Top  /\  ( X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) ) )
54 3anass 986 . 2  |-  ( ( J  e.  Top  /\  X  =  Y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  A  | 
( s  i^i  n
)  =/=  (/) }  e.  Fin ) )  <->  ( J  e.  Top  /\  ( X  =  Y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  A  | 
( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) ) )
5553, 54bitr4i 255 1  |-  ( A  e.  ( LocFin `  J
)  <->  ( J  e. 
Top  /\  X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872   {cab 2414    =/= wne 2599   A.wral 2714   E.wrex 2715   {crab 2718   _Vcvv 3022    i^i cin 3378    C_ wss 3379   (/)c0 3704   ~Pcpw 3924   U.cuni 4162   dom cdm 4796   ` cfv 5544   Fincfn 7524   Topctop 19859   LocFinclocfin 20461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-ral 2719  df-rex 2720  df-rab 2723  df-v 3024  df-sbc 3243  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-op 3948  df-uni 4163  df-br 4367  df-opab 4426  df-mpt 4427  df-id 4711  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-iota 5508  df-fun 5546  df-fv 5552  df-top 19863  df-locfin 20464
This theorem is referenced by:  finlocfin  20477  locfintop  20478  locfinbas  20479  locfinnei  20480  lfinun  20482  dissnlocfin  20486  locfindis  20487  locfincf  20488  locfinreflem  28619  locfinref  28620
  Copyright terms: Public domain W3C validator