MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islmim Structured version   Unicode version

Theorem islmim 17579
Description: An isomorphism of left modules is a bijective homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Hypotheses
Ref Expression
islmim.b  |-  B  =  ( Base `  R
)
islmim.c  |-  C  =  ( Base `  S
)
Assertion
Ref Expression
islmim  |-  ( F  e.  ( R LMIso  S
)  <->  ( F  e.  ( R LMHom  S )  /\  F : B -1-1-onto-> C
) )

Proof of Theorem islmim
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lmim 17540 . . 3  |- LMIso  =  ( a  e.  LMod ,  b  e.  LMod  |->  { c  e.  ( a LMHom  b
)  |  c : ( Base `  a
)
-1-1-onto-> ( Base `  b ) } )
2 ovex 6320 . . . 4  |-  ( a LMHom 
b )  e.  _V
32rabex 4604 . . 3  |-  { c  e.  ( a LMHom  b
)  |  c : ( Base `  a
)
-1-1-onto-> ( Base `  b ) }  e.  _V
4 oveq12 6304 . . . 4  |-  ( ( a  =  R  /\  b  =  S )  ->  ( a LMHom  b )  =  ( R LMHom  S
) )
5 fveq2 5872 . . . . . 6  |-  ( a  =  R  ->  ( Base `  a )  =  ( Base `  R
) )
6 islmim.b . . . . . 6  |-  B  =  ( Base `  R
)
75, 6syl6eqr 2526 . . . . 5  |-  ( a  =  R  ->  ( Base `  a )  =  B )
8 fveq2 5872 . . . . . 6  |-  ( b  =  S  ->  ( Base `  b )  =  ( Base `  S
) )
9 islmim.c . . . . . 6  |-  C  =  ( Base `  S
)
108, 9syl6eqr 2526 . . . . 5  |-  ( b  =  S  ->  ( Base `  b )  =  C )
11 f1oeq23 5816 . . . . 5  |-  ( ( ( Base `  a
)  =  B  /\  ( Base `  b )  =  C )  ->  (
c : ( Base `  a ) -1-1-onto-> ( Base `  b
)  <->  c : B -1-1-onto-> C
) )
127, 10, 11syl2an 477 . . . 4  |-  ( ( a  =  R  /\  b  =  S )  ->  ( c : (
Base `  a ) -1-1-onto-> ( Base `  b )  <->  c : B
-1-1-onto-> C ) )
134, 12rabeqbidv 3113 . . 3  |-  ( ( a  =  R  /\  b  =  S )  ->  { c  e.  ( a LMHom  b )  |  c : ( Base `  a ) -1-1-onto-> ( Base `  b
) }  =  {
c  e.  ( R LMHom 
S )  |  c : B -1-1-onto-> C } )
141, 3, 13elovmpt2 6515 . 2  |-  ( F  e.  ( R LMIso  S
)  <->  ( R  e. 
LMod  /\  S  e.  LMod  /\  F  e.  { c  e.  ( R LMHom  S
)  |  c : B -1-1-onto-> C } ) )
15 df-3an 975 . 2  |-  ( ( R  e.  LMod  /\  S  e.  LMod  /\  F  e.  { c  e.  ( R LMHom 
S )  |  c : B -1-1-onto-> C } )  <->  ( ( R  e.  LMod  /\  S  e.  LMod )  /\  F  e.  { c  e.  ( R LMHom  S )  |  c : B -1-1-onto-> C }
) )
16 f1oeq1 5813 . . . . 5  |-  ( c  =  F  ->  (
c : B -1-1-onto-> C  <->  F : B
-1-1-onto-> C ) )
1716elrab 3266 . . . 4  |-  ( F  e.  { c  e.  ( R LMHom  S )  |  c : B -1-1-onto-> C } 
<->  ( F  e.  ( R LMHom  S )  /\  F : B -1-1-onto-> C ) )
1817anbi2i 694 . . 3  |-  ( ( ( R  e.  LMod  /\  S  e.  LMod )  /\  F  e.  { c  e.  ( R LMHom  S
)  |  c : B -1-1-onto-> C } )  <->  ( ( R  e.  LMod  /\  S  e.  LMod )  /\  ( F  e.  ( R LMHom  S )  /\  F : B
-1-1-onto-> C ) ) )
19 lmhmlmod1 17550 . . . . . 6  |-  ( F  e.  ( R LMHom  S
)  ->  R  e.  LMod )
20 lmhmlmod2 17549 . . . . . 6  |-  ( F  e.  ( R LMHom  S
)  ->  S  e.  LMod )
2119, 20jca 532 . . . . 5  |-  ( F  e.  ( R LMHom  S
)  ->  ( R  e.  LMod  /\  S  e.  LMod ) )
2221adantr 465 . . . 4  |-  ( ( F  e.  ( R LMHom 
S )  /\  F : B -1-1-onto-> C )  ->  ( R  e.  LMod  /\  S  e.  LMod ) )
2322pm4.71ri 633 . . 3  |-  ( ( F  e.  ( R LMHom 
S )  /\  F : B -1-1-onto-> C )  <->  ( ( R  e.  LMod  /\  S  e.  LMod )  /\  ( F  e.  ( R LMHom  S )  /\  F : B
-1-1-onto-> C ) ) )
2418, 23bitr4i 252 . 2  |-  ( ( ( R  e.  LMod  /\  S  e.  LMod )  /\  F  e.  { c  e.  ( R LMHom  S
)  |  c : B -1-1-onto-> C } )  <->  ( F  e.  ( R LMHom  S )  /\  F : B -1-1-onto-> C
) )
2514, 15, 243bitri 271 1  |-  ( F  e.  ( R LMIso  S
)  <->  ( F  e.  ( R LMHom  S )  /\  F : B -1-1-onto-> C
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   {crab 2821   -1-1-onto->wf1o 5593   ` cfv 5594  (class class class)co 6295   Basecbs 14507   LModclmod 17383   LMHom clmhm 17536   LMIso clmim 17537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-lmhm 17539  df-lmim 17540
This theorem is referenced by:  lmimf1o  17580  lmimlmhm  17581  islmim2  17583  indlcim  18744  lmimco  18748  pwssplit4  30963
  Copyright terms: Public domain W3C validator