MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islmhmd Structured version   Unicode version

Theorem islmhmd 17223
Description: Deduction for a module homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.)
Hypotheses
Ref Expression
islmhmd.x  |-  X  =  ( Base `  S
)
islmhmd.a  |-  .x.  =  ( .s `  S )
islmhmd.b  |-  .X.  =  ( .s `  T )
islmhmd.k  |-  K  =  (Scalar `  S )
islmhmd.j  |-  J  =  (Scalar `  T )
islmhmd.n  |-  N  =  ( Base `  K
)
islmhmd.s  |-  ( ph  ->  S  e.  LMod )
islmhmd.t  |-  ( ph  ->  T  e.  LMod )
islmhmd.c  |-  ( ph  ->  J  =  K )
islmhmd.f  |-  ( ph  ->  F  e.  ( S 
GrpHom  T ) )
islmhmd.l  |-  ( (
ph  /\  ( x  e.  N  /\  y  e.  X ) )  -> 
( F `  (
x  .x.  y )
)  =  ( x 
.X.  ( F `  y ) ) )
Assertion
Ref Expression
islmhmd  |-  ( ph  ->  F  e.  ( S LMHom 
T ) )
Distinct variable groups:    ph, x, y   
x, F, y    x, S, y    x, T, y   
x, X, y    x, J, y    x, N, y   
x, K, y
Allowed substitution hints:    .x. ( x, y)    .X. ( x, y)

Proof of Theorem islmhmd
StepHypRef Expression
1 islmhmd.s . . 3  |-  ( ph  ->  S  e.  LMod )
2 islmhmd.t . . 3  |-  ( ph  ->  T  e.  LMod )
31, 2jca 532 . 2  |-  ( ph  ->  ( S  e.  LMod  /\  T  e.  LMod )
)
4 islmhmd.f . . 3  |-  ( ph  ->  F  e.  ( S 
GrpHom  T ) )
5 islmhmd.c . . 3  |-  ( ph  ->  J  =  K )
6 islmhmd.l . . . 4  |-  ( (
ph  /\  ( x  e.  N  /\  y  e.  X ) )  -> 
( F `  (
x  .x.  y )
)  =  ( x 
.X.  ( F `  y ) ) )
76ralrimivva 2901 . . 3  |-  ( ph  ->  A. x  e.  N  A. y  e.  X  ( F `  ( x 
.x.  y ) )  =  ( x  .X.  ( F `  y ) ) )
84, 5, 73jca 1168 . 2  |-  ( ph  ->  ( F  e.  ( S  GrpHom  T )  /\  J  =  K  /\  A. x  e.  N  A. y  e.  X  ( F `  ( x  .x.  y ) )  =  ( x  .X.  ( F `  y )
) ) )
9 islmhmd.k . . 3  |-  K  =  (Scalar `  S )
10 islmhmd.j . . 3  |-  J  =  (Scalar `  T )
11 islmhmd.n . . 3  |-  N  =  ( Base `  K
)
12 islmhmd.x . . 3  |-  X  =  ( Base `  S
)
13 islmhmd.a . . 3  |-  .x.  =  ( .s `  S )
14 islmhmd.b . . 3  |-  .X.  =  ( .s `  T )
159, 10, 11, 12, 13, 14islmhm 17211 . 2  |-  ( F  e.  ( S LMHom  T
)  <->  ( ( S  e.  LMod  /\  T  e. 
LMod )  /\  ( F  e.  ( S  GrpHom  T )  /\  J  =  K  /\  A. x  e.  N  A. y  e.  X  ( F `  ( x  .x.  y
) )  =  ( x  .X.  ( F `  y ) ) ) ) )
163, 8, 15sylanbrc 664 1  |-  ( ph  ->  F  e.  ( S LMHom 
T ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2793   ` cfv 5513  (class class class)co 6187   Basecbs 14273  Scalarcsca 14340   .scvsca 14341    GrpHom cghm 15843   LModclmod 17051   LMHom clmhm 17203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4508  ax-nul 4516  ax-pow 4565  ax-pr 4626
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2599  df-ne 2644  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3067  df-sbc 3282  df-dif 3426  df-un 3428  df-in 3430  df-ss 3437  df-nul 3733  df-if 3887  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4187  df-br 4388  df-opab 4446  df-id 4731  df-xp 4941  df-rel 4942  df-cnv 4943  df-co 4944  df-dm 4945  df-iota 5476  df-fun 5515  df-fv 5521  df-ov 6190  df-oprab 6191  df-mpt2 6192  df-lmhm 17206
This theorem is referenced by:  0lmhm  17224  idlmhm  17225  invlmhm  17226  lmhmco  17227  lmhmplusg  17228  lmhmvsca  17229  lmhmf1o  17230  reslmhm2  17237  reslmhm2b  17238  pwsdiaglmhm  17241  pwssplit3  17245  frlmup1  18332
  Copyright terms: Public domain W3C validator