MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islmhm Unicode version

Theorem islmhm 16058
Description: Property of being a homomorphism of left modules. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Proof shortened by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
islmhm.k  |-  K  =  (Scalar `  S )
islmhm.l  |-  L  =  (Scalar `  T )
islmhm.b  |-  B  =  ( Base `  K
)
islmhm.e  |-  E  =  ( Base `  S
)
islmhm.m  |-  .x.  =  ( .s `  S )
islmhm.n  |-  .X.  =  ( .s `  T )
Assertion
Ref Expression
islmhm  |-  ( F  e.  ( S LMHom  T
)  <->  ( ( S  e.  LMod  /\  T  e. 
LMod )  /\  ( F  e.  ( S  GrpHom  T )  /\  L  =  K  /\  A. x  e.  B  A. y  e.  E  ( F `  ( x  .x.  y
) )  =  ( x  .X.  ( F `  y ) ) ) ) )
Distinct variable groups:    x, B    y, E    x, y, S   
x, F, y    x, T, y
Allowed substitution hints:    B( y)    .x. ( x, y)   
.X. ( x, y)    E( x)    K( x, y)    L( x, y)

Proof of Theorem islmhm
Dummy variables  f 
s  t  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lmhm 16053 . . 3  |- LMHom  =  ( s  e.  LMod ,  t  e.  LMod  |->  { f  e.  ( s  GrpHom  t )  |  [. (Scalar `  s )  /  w ]. ( (Scalar `  t
)  =  w  /\  A. x  e.  ( Base `  w ) A. y  e.  ( Base `  s
) ( f `  ( x ( .s
`  s ) y ) )  =  ( x ( .s `  t ) ( f `
 y ) ) ) } )
21elmpt2cl 6247 . 2  |-  ( F  e.  ( S LMHom  T
)  ->  ( S  e.  LMod  /\  T  e.  LMod ) )
3 oveq12 6049 . . . . . 6  |-  ( ( s  =  S  /\  t  =  T )  ->  ( s  GrpHom  t )  =  ( S  GrpHom  T ) )
4 fvex 5701 . . . . . . . 8  |-  (Scalar `  s )  e.  _V
54a1i 11 . . . . . . 7  |-  ( ( s  =  S  /\  t  =  T )  ->  (Scalar `  s )  e.  _V )
6 simplr 732 . . . . . . . . . . 11  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  t  =  T )
76fveq2d 5691 . . . . . . . . . 10  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  (Scalar `  t
)  =  (Scalar `  T ) )
8 islmhm.l . . . . . . . . . 10  |-  L  =  (Scalar `  T )
97, 8syl6eqr 2454 . . . . . . . . 9  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  (Scalar `  t
)  =  L )
10 simpr 448 . . . . . . . . . . 11  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  w  =  (Scalar `  s ) )
11 simpll 731 . . . . . . . . . . . 12  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  s  =  S )
1211fveq2d 5691 . . . . . . . . . . 11  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  (Scalar `  s
)  =  (Scalar `  S ) )
1310, 12eqtrd 2436 . . . . . . . . . 10  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  w  =  (Scalar `  S ) )
14 islmhm.k . . . . . . . . . 10  |-  K  =  (Scalar `  S )
1513, 14syl6eqr 2454 . . . . . . . . 9  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  w  =  K )
169, 15eqeq12d 2418 . . . . . . . 8  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( (Scalar `  t )  =  w  <-> 
L  =  K ) )
1715fveq2d 5691 . . . . . . . . . 10  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( Base `  w )  =  (
Base `  K )
)
18 islmhm.b . . . . . . . . . 10  |-  B  =  ( Base `  K
)
1917, 18syl6eqr 2454 . . . . . . . . 9  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( Base `  w )  =  B )
2011fveq2d 5691 . . . . . . . . . . 11  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( Base `  s )  =  (
Base `  S )
)
21 islmhm.e . . . . . . . . . . 11  |-  E  =  ( Base `  S
)
2220, 21syl6eqr 2454 . . . . . . . . . 10  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( Base `  s )  =  E )
2311fveq2d 5691 . . . . . . . . . . . . . 14  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( .s `  s )  =  ( .s `  S ) )
24 islmhm.m . . . . . . . . . . . . . 14  |-  .x.  =  ( .s `  S )
2523, 24syl6eqr 2454 . . . . . . . . . . . . 13  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( .s `  s )  =  .x.  )
2625oveqd 6057 . . . . . . . . . . . 12  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( x
( .s `  s
) y )  =  ( x  .x.  y
) )
2726fveq2d 5691 . . . . . . . . . . 11  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( f `  ( x ( .s
`  s ) y ) )  =  ( f `  ( x 
.x.  y ) ) )
286fveq2d 5691 . . . . . . . . . . . . 13  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( .s `  t )  =  ( .s `  T ) )
29 islmhm.n . . . . . . . . . . . . 13  |-  .X.  =  ( .s `  T )
3028, 29syl6eqr 2454 . . . . . . . . . . . 12  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( .s `  t )  =  .X.  )
3130oveqd 6057 . . . . . . . . . . 11  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( x
( .s `  t
) ( f `  y ) )  =  ( x  .X.  (
f `  y )
) )
3227, 31eqeq12d 2418 . . . . . . . . . 10  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( (
f `  ( x
( .s `  s
) y ) )  =  ( x ( .s `  t ) ( f `  y
) )  <->  ( f `  ( x  .x.  y
) )  =  ( x  .X.  ( f `  y ) ) ) )
3322, 32raleqbidv 2876 . . . . . . . . 9  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( A. y  e.  ( Base `  s ) ( f `
 ( x ( .s `  s ) y ) )  =  ( x ( .s
`  t ) ( f `  y ) )  <->  A. y  e.  E  ( f `  (
x  .x.  y )
)  =  ( x 
.X.  ( f `  y ) ) ) )
3419, 33raleqbidv 2876 . . . . . . . 8  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( A. x  e.  ( Base `  w ) A. y  e.  ( Base `  s
) ( f `  ( x ( .s
`  s ) y ) )  =  ( x ( .s `  t ) ( f `
 y ) )  <->  A. x  e.  B  A. y  e.  E  ( f `  (
x  .x.  y )
)  =  ( x 
.X.  ( f `  y ) ) ) )
3516, 34anbi12d 692 . . . . . . 7  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( (
(Scalar `  t )  =  w  /\  A. x  e.  ( Base `  w
) A. y  e.  ( Base `  s
) ( f `  ( x ( .s
`  s ) y ) )  =  ( x ( .s `  t ) ( f `
 y ) ) )  <->  ( L  =  K  /\  A. x  e.  B  A. y  e.  E  ( f `  ( x  .x.  y
) )  =  ( x  .X.  ( f `  y ) ) ) ) )
365, 35sbcied 3157 . . . . . 6  |-  ( ( s  =  S  /\  t  =  T )  ->  ( [. (Scalar `  s )  /  w ]. ( (Scalar `  t
)  =  w  /\  A. x  e.  ( Base `  w ) A. y  e.  ( Base `  s
) ( f `  ( x ( .s
`  s ) y ) )  =  ( x ( .s `  t ) ( f `
 y ) ) )  <->  ( L  =  K  /\  A. x  e.  B  A. y  e.  E  ( f `  ( x  .x.  y
) )  =  ( x  .X.  ( f `  y ) ) ) ) )
373, 36rabeqbidv 2911 . . . . 5  |-  ( ( s  =  S  /\  t  =  T )  ->  { f  e.  ( s  GrpHom  t )  | 
[. (Scalar `  s )  /  w ]. ( (Scalar `  t )  =  w  /\  A. x  e.  ( Base `  w
) A. y  e.  ( Base `  s
) ( f `  ( x ( .s
`  s ) y ) )  =  ( x ( .s `  t ) ( f `
 y ) ) ) }  =  {
f  e.  ( S 
GrpHom  T )  |  ( L  =  K  /\  A. x  e.  B  A. y  e.  E  (
f `  ( x  .x.  y ) )  =  ( x  .X.  (
f `  y )
) ) } )
38 ovex 6065 . . . . . 6  |-  ( S 
GrpHom  T )  e.  _V
3938rabex 4314 . . . . 5  |-  { f  e.  ( S  GrpHom  T )  |  ( L  =  K  /\  A. x  e.  B  A. y  e.  E  (
f `  ( x  .x.  y ) )  =  ( x  .X.  (
f `  y )
) ) }  e.  _V
4037, 1, 39ovmpt2a 6163 . . . 4  |-  ( ( S  e.  LMod  /\  T  e.  LMod )  ->  ( S LMHom  T )  =  {
f  e.  ( S 
GrpHom  T )  |  ( L  =  K  /\  A. x  e.  B  A. y  e.  E  (
f `  ( x  .x.  y ) )  =  ( x  .X.  (
f `  y )
) ) } )
4140eleq2d 2471 . . 3  |-  ( ( S  e.  LMod  /\  T  e.  LMod )  ->  ( F  e.  ( S LMHom  T )  <->  F  e.  { f  e.  ( S  GrpHom  T )  |  ( L  =  K  /\  A. x  e.  B  A. y  e.  E  (
f `  ( x  .x.  y ) )  =  ( x  .X.  (
f `  y )
) ) } ) )
42 fveq1 5686 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  ( x  .x.  y ) )  =  ( F `  (
x  .x.  y )
) )
43 fveq1 5686 . . . . . . . . 9  |-  ( f  =  F  ->  (
f `  y )  =  ( F `  y ) )
4443oveq2d 6056 . . . . . . . 8  |-  ( f  =  F  ->  (
x  .X.  ( f `  y ) )  =  ( x  .X.  ( F `  y )
) )
4542, 44eqeq12d 2418 . . . . . . 7  |-  ( f  =  F  ->  (
( f `  (
x  .x.  y )
)  =  ( x 
.X.  ( f `  y ) )  <->  ( F `  ( x  .x.  y
) )  =  ( x  .X.  ( F `  y ) ) ) )
46452ralbidv 2708 . . . . . 6  |-  ( f  =  F  ->  ( A. x  e.  B  A. y  e.  E  ( f `  (
x  .x.  y )
)  =  ( x 
.X.  ( f `  y ) )  <->  A. x  e.  B  A. y  e.  E  ( F `  ( x  .x.  y
) )  =  ( x  .X.  ( F `  y ) ) ) )
4746anbi2d 685 . . . . 5  |-  ( f  =  F  ->  (
( L  =  K  /\  A. x  e.  B  A. y  e.  E  ( f `  ( x  .x.  y ) )  =  ( x 
.X.  ( f `  y ) ) )  <-> 
( L  =  K  /\  A. x  e.  B  A. y  e.  E  ( F `  ( x  .x.  y ) )  =  ( x 
.X.  ( F `  y ) ) ) ) )
4847elrab 3052 . . . 4  |-  ( F  e.  { f  e.  ( S  GrpHom  T )  |  ( L  =  K  /\  A. x  e.  B  A. y  e.  E  ( f `  ( x  .x.  y
) )  =  ( x  .X.  ( f `  y ) ) ) }  <->  ( F  e.  ( S  GrpHom  T )  /\  ( L  =  K  /\  A. x  e.  B  A. y  e.  E  ( F `  ( x  .x.  y
) )  =  ( x  .X.  ( F `  y ) ) ) ) )
49 3anass 940 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  L  =  K  /\  A. x  e.  B  A. y  e.  E  ( F `  ( x  .x.  y
) )  =  ( x  .X.  ( F `  y ) ) )  <-> 
( F  e.  ( S  GrpHom  T )  /\  ( L  =  K  /\  A. x  e.  B  A. y  e.  E  ( F `  ( x 
.x.  y ) )  =  ( x  .X.  ( F `  y ) ) ) ) )
5048, 49bitr4i 244 . . 3  |-  ( F  e.  { f  e.  ( S  GrpHom  T )  |  ( L  =  K  /\  A. x  e.  B  A. y  e.  E  ( f `  ( x  .x.  y
) )  =  ( x  .X.  ( f `  y ) ) ) }  <->  ( F  e.  ( S  GrpHom  T )  /\  L  =  K  /\  A. x  e.  B  A. y  e.  E  ( F `  ( x  .x.  y ) )  =  ( x 
.X.  ( F `  y ) ) ) )
5141, 50syl6bb 253 . 2  |-  ( ( S  e.  LMod  /\  T  e.  LMod )  ->  ( F  e.  ( S LMHom  T )  <->  ( F  e.  ( S  GrpHom  T )  /\  L  =  K  /\  A. x  e.  B  A. y  e.  E  ( F `  ( x  .x.  y ) )  =  ( x 
.X.  ( F `  y ) ) ) ) )
522, 51biadan2 624 1  |-  ( F  e.  ( S LMHom  T
)  <->  ( ( S  e.  LMod  /\  T  e. 
LMod )  /\  ( F  e.  ( S  GrpHom  T )  /\  L  =  K  /\  A. x  e.  B  A. y  e.  E  ( F `  ( x  .x.  y
) )  =  ( x  .X.  ( F `  y ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   {crab 2670   _Vcvv 2916   [.wsbc 3121   ` cfv 5413  (class class class)co 6040   Basecbs 13424  Scalarcsca 13487   .scvsca 13488    GrpHom cghm 14958   LModclmod 15905   LMHom clmhm 16050
This theorem is referenced by:  islmhm3  16059  lmhmlem  16060  lmhmlin  16066  islmhmd  16070  reslmhm  16083  lmhmpropd  16100
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-iota 5377  df-fun 5415  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-lmhm 16053
  Copyright terms: Public domain W3C validator