Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isline Structured version   Unicode version

Theorem isline 33665
Description: The predicate "is a line". (Contributed by NM, 19-Sep-2011.)
Hypotheses
Ref Expression
isline.l  |-  .<_  =  ( le `  K )
isline.j  |-  .\/  =  ( join `  K )
isline.a  |-  A  =  ( Atoms `  K )
isline.n  |-  N  =  ( Lines `  K )
Assertion
Ref Expression
isline  |-  ( K  e.  D  ->  ( X  e.  N  <->  E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  X  =  { p  e.  A  |  p  .<_  ( q 
.\/  r ) } ) ) )
Distinct variable groups:    q, p, r, A    K, p, q, r    X, q, r
Allowed substitution hints:    D( r, q, p)    .\/ ( r, q, p)    .<_ ( r, q, p)    N( r, q, p)    X( p)

Proof of Theorem isline
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 isline.l . . . 4  |-  .<_  =  ( le `  K )
2 isline.j . . . 4  |-  .\/  =  ( join `  K )
3 isline.a . . . 4  |-  A  =  ( Atoms `  K )
4 isline.n . . . 4  |-  N  =  ( Lines `  K )
51, 2, 3, 4lineset 33664 . . 3  |-  ( K  e.  D  ->  N  =  { x  |  E. q  e.  A  E. r  e.  A  (
q  =/=  r  /\  x  =  { p  e.  A  |  p  .<_  ( q  .\/  r
) } ) } )
65eleq2d 2519 . 2  |-  ( K  e.  D  ->  ( X  e.  N  <->  X  e.  { x  |  E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  x  =  { p  e.  A  |  p  .<_  ( q 
.\/  r ) } ) } ) )
7 fvex 5785 . . . . . . . . 9  |-  ( Atoms `  K )  e.  _V
83, 7eqeltri 2532 . . . . . . . 8  |-  A  e. 
_V
98rabex 4527 . . . . . . 7  |-  { p  e.  A  |  p  .<_  ( q  .\/  r
) }  e.  _V
10 eleq1 2520 . . . . . . 7  |-  ( X  =  { p  e.  A  |  p  .<_  ( q  .\/  r ) }  ->  ( X  e.  _V  <->  { p  e.  A  |  p  .<_  ( q 
.\/  r ) }  e.  _V ) )
119, 10mpbiri 233 . . . . . 6  |-  ( X  =  { p  e.  A  |  p  .<_  ( q  .\/  r ) }  ->  X  e.  _V )
1211adantl 466 . . . . 5  |-  ( ( q  =/=  r  /\  X  =  { p  e.  A  |  p  .<_  ( q  .\/  r
) } )  ->  X  e.  _V )
1312a1i 11 . . . 4  |-  ( ( q  e.  A  /\  r  e.  A )  ->  ( ( q  =/=  r  /\  X  =  { p  e.  A  |  p  .<_  ( q 
.\/  r ) } )  ->  X  e.  _V ) )
1413rexlimivv 2928 . . 3  |-  ( E. q  e.  A  E. r  e.  A  (
q  =/=  r  /\  X  =  { p  e.  A  |  p  .<_  ( q  .\/  r
) } )  ->  X  e.  _V )
15 eqeq1 2453 . . . . 5  |-  ( x  =  X  ->  (
x  =  { p  e.  A  |  p  .<_  ( q  .\/  r
) }  <->  X  =  { p  e.  A  |  p  .<_  ( q 
.\/  r ) } ) )
1615anbi2d 703 . . . 4  |-  ( x  =  X  ->  (
( q  =/=  r  /\  x  =  {
p  e.  A  |  p  .<_  ( q  .\/  r ) } )  <-> 
( q  =/=  r  /\  X  =  {
p  e.  A  |  p  .<_  ( q  .\/  r ) } ) ) )
17162rexbidv 2839 . . 3  |-  ( x  =  X  ->  ( E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  x  =  {
p  e.  A  |  p  .<_  ( q  .\/  r ) } )  <->  E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  X  =  {
p  e.  A  |  p  .<_  ( q  .\/  r ) } ) ) )
1814, 17elab3 3196 . 2  |-  ( X  e.  { x  |  E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  x  =  {
p  e.  A  |  p  .<_  ( q  .\/  r ) } ) }  <->  E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  X  =  {
p  e.  A  |  p  .<_  ( q  .\/  r ) } ) )
196, 18syl6bb 261 1  |-  ( K  e.  D  ->  ( X  e.  N  <->  E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  X  =  { p  e.  A  |  p  .<_  ( q 
.\/  r ) } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1757   {cab 2435    =/= wne 2641   E.wrex 2793   {crab 2796   _Vcvv 3054   class class class wbr 4376   ` cfv 5502  (class class class)co 6176   lecple 14333   joincjn 15202   Atomscatm 33190   Linesclines 33420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1709  ax-7 1729  ax-8 1759  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2429  ax-rep 4487  ax-sep 4497  ax-nul 4505  ax-pr 4615  ax-un 6458
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1702  df-eu 2263  df-mo 2264  df-clab 2436  df-cleq 2442  df-clel 2445  df-nfc 2598  df-ne 2643  df-ral 2797  df-rex 2798  df-reu 2799  df-rab 2801  df-v 3056  df-sbc 3271  df-csb 3373  df-dif 3415  df-un 3417  df-in 3419  df-ss 3426  df-nul 3722  df-if 3876  df-sn 3962  df-pr 3964  df-op 3968  df-uni 4176  df-iun 4257  df-br 4377  df-opab 4435  df-mpt 4436  df-id 4720  df-xp 4930  df-rel 4931  df-cnv 4932  df-co 4933  df-dm 4934  df-rn 4935  df-res 4936  df-ima 4937  df-iota 5465  df-fun 5504  df-fn 5505  df-f 5506  df-f1 5507  df-fo 5508  df-f1o 5509  df-fv 5510  df-ov 6179  df-lines 33427
This theorem is referenced by:  islinei  33666  linepsubN  33678  isline2  33700
  Copyright terms: Public domain W3C validator