MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islinds2 Structured version   Unicode version

Theorem islinds2 19018
Description: Expanded property of an independent set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
islindf.b  |-  B  =  ( Base `  W
)
islindf.v  |-  .x.  =  ( .s `  W )
islindf.k  |-  K  =  ( LSpan `  W )
islindf.s  |-  S  =  (Scalar `  W )
islindf.n  |-  N  =  ( Base `  S
)
islindf.z  |-  .0.  =  ( 0g `  S )
Assertion
Ref Expression
islinds2  |-  ( W  e.  Y  ->  ( F  e.  (LIndS `  W
)  <->  ( F  C_  B  /\  A. x  e.  F  A. k  e.  ( N  \  {  .0.  } )  -.  (
k  .x.  x )  e.  ( K `  ( F  \  { x }
) ) ) ) )
Distinct variable groups:    k, F, x    k, N    k, W, x    .0. , k
Allowed substitution hints:    B( x, k)    S( x, k)    .x. ( x, k)    K( x, k)    N( x)    Y( x, k)    .0. ( x)

Proof of Theorem islinds2
StepHypRef Expression
1 islindf.b . . 3  |-  B  =  ( Base `  W
)
21islinds 19014 . 2  |-  ( W  e.  Y  ->  ( F  e.  (LIndS `  W
)  <->  ( F  C_  B  /\  (  _I  |`  F ) LIndF 
W ) ) )
3 fvex 5858 . . . . . . . 8  |-  ( Base `  W )  e.  _V
41, 3eqeltri 2538 . . . . . . 7  |-  B  e. 
_V
54ssex 4581 . . . . . 6  |-  ( F 
C_  B  ->  F  e.  _V )
65adantl 464 . . . . 5  |-  ( ( W  e.  Y  /\  F  C_  B )  ->  F  e.  _V )
7 resiexg 6709 . . . . 5  |-  ( F  e.  _V  ->  (  _I  |`  F )  e. 
_V )
86, 7syl 16 . . . 4  |-  ( ( W  e.  Y  /\  F  C_  B )  -> 
(  _I  |`  F )  e.  _V )
9 islindf.v . . . . 5  |-  .x.  =  ( .s `  W )
10 islindf.k . . . . 5  |-  K  =  ( LSpan `  W )
11 islindf.s . . . . 5  |-  S  =  (Scalar `  W )
12 islindf.n . . . . 5  |-  N  =  ( Base `  S
)
13 islindf.z . . . . 5  |-  .0.  =  ( 0g `  S )
141, 9, 10, 11, 12, 13islindf 19017 . . . 4  |-  ( ( W  e.  Y  /\  (  _I  |`  F )  e.  _V )  -> 
( (  _I  |`  F ) LIndF 
W  <->  ( (  _I  |`  F ) : dom  (  _I  |`  F ) --> B  /\  A. x  e.  dom  (  _I  |`  F ) A. k  e.  ( N  \  {  .0.  } )  -.  ( k 
.x.  ( (  _I  |`  F ) `  x
) )  e.  ( K `  ( (  _I  |`  F ) " ( dom  (  _I  |`  F )  \  { x } ) ) ) ) ) )
158, 14syldan 468 . . 3  |-  ( ( W  e.  Y  /\  F  C_  B )  -> 
( (  _I  |`  F ) LIndF 
W  <->  ( (  _I  |`  F ) : dom  (  _I  |`  F ) --> B  /\  A. x  e.  dom  (  _I  |`  F ) A. k  e.  ( N  \  {  .0.  } )  -.  ( k 
.x.  ( (  _I  |`  F ) `  x
) )  e.  ( K `  ( (  _I  |`  F ) " ( dom  (  _I  |`  F )  \  { x } ) ) ) ) ) )
1615pm5.32da 639 . 2  |-  ( W  e.  Y  ->  (
( F  C_  B  /\  (  _I  |`  F ) LIndF 
W )  <->  ( F  C_  B  /\  ( (  _I  |`  F ) : dom  (  _I  |`  F ) --> B  /\  A. x  e.  dom  (  _I  |`  F ) A. k  e.  ( N  \  {  .0.  } )  -.  ( k 
.x.  ( (  _I  |`  F ) `  x
) )  e.  ( K `  ( (  _I  |`  F ) " ( dom  (  _I  |`  F )  \  { x } ) ) ) ) ) ) )
17 f1oi 5833 . . . . . . . . 9  |-  (  _I  |`  F ) : F -1-1-onto-> F
18 f1of 5798 . . . . . . . . 9  |-  ( (  _I  |`  F ) : F -1-1-onto-> F  ->  (  _I  |`  F ) : F --> F )
1917, 18ax-mp 5 . . . . . . . 8  |-  (  _I  |`  F ) : F --> F
20 dmresi 5317 . . . . . . . . 9  |-  dom  (  _I  |`  F )  =  F
2120feq2i 5706 . . . . . . . 8  |-  ( (  _I  |`  F ) : dom  (  _I  |`  F ) --> F  <->  (  _I  |`  F ) : F --> F )
2219, 21mpbir 209 . . . . . . 7  |-  (  _I  |`  F ) : dom  (  _I  |`  F ) --> F
23 fss 5721 . . . . . . 7  |-  ( ( (  _I  |`  F ) : dom  (  _I  |`  F ) --> F  /\  F  C_  B )  -> 
(  _I  |`  F ) : dom  (  _I  |`  F ) --> B )
2422, 23mpan 668 . . . . . 6  |-  ( F 
C_  B  ->  (  _I  |`  F ) : dom  (  _I  |`  F ) --> B )
2524biantrurd 506 . . . . 5  |-  ( F 
C_  B  ->  ( A. x  e.  F  A. k  e.  ( N  \  {  .0.  }
)  -.  ( k 
.x.  x )  e.  ( K `  ( F  \  { x }
) )  <->  ( (  _I  |`  F ) : dom  (  _I  |`  F ) --> B  /\  A. x  e.  F  A. k  e.  ( N  \  {  .0.  } )  -.  (
k  .x.  x )  e.  ( K `  ( F  \  { x }
) ) ) ) )
2620raleqi 3055 . . . . . . 7  |-  ( A. x  e.  dom  (  _I  |`  F ) A. k  e.  ( N  \  {  .0.  } )  -.  (
k  .x.  ( (  _I  |`  F ) `  x ) )  e.  ( K `  (
(  _I  |`  F )
" ( dom  (  _I  |`  F )  \  { x } ) ) )  <->  A. x  e.  F  A. k  e.  ( N  \  {  .0.  } )  -.  (
k  .x.  ( (  _I  |`  F ) `  x ) )  e.  ( K `  (
(  _I  |`  F )
" ( dom  (  _I  |`  F )  \  { x } ) ) ) )
27 fvresi 6073 . . . . . . . . . . . 12  |-  ( x  e.  F  ->  (
(  _I  |`  F ) `
 x )  =  x )
2827oveq2d 6286 . . . . . . . . . . 11  |-  ( x  e.  F  ->  (
k  .x.  ( (  _I  |`  F ) `  x ) )  =  ( k  .x.  x
) )
2920difeq1i 3604 . . . . . . . . . . . . . . 15  |-  ( dom  (  _I  |`  F ) 
\  { x }
)  =  ( F 
\  { x }
)
3029imaeq2i 5323 . . . . . . . . . . . . . 14  |-  ( (  _I  |`  F ) " ( dom  (  _I  |`  F )  \  { x } ) )  =  ( (  _I  |`  F ) " ( F  \  { x } ) )
31 difss 3617 . . . . . . . . . . . . . . 15  |-  ( F 
\  { x }
)  C_  F
32 resiima 5339 . . . . . . . . . . . . . . 15  |-  ( ( F  \  { x } )  C_  F  ->  ( (  _I  |`  F )
" ( F  \  { x } ) )  =  ( F 
\  { x }
) )
3331, 32ax-mp 5 . . . . . . . . . . . . . 14  |-  ( (  _I  |`  F ) " ( F  \  { x } ) )  =  ( F 
\  { x }
)
3430, 33eqtri 2483 . . . . . . . . . . . . 13  |-  ( (  _I  |`  F ) " ( dom  (  _I  |`  F )  \  { x } ) )  =  ( F 
\  { x }
)
3534fveq2i 5851 . . . . . . . . . . . 12  |-  ( K `
 ( (  _I  |`  F ) " ( dom  (  _I  |`  F ) 
\  { x }
) ) )  =  ( K `  ( F  \  { x }
) )
3635a1i 11 . . . . . . . . . . 11  |-  ( x  e.  F  ->  ( K `  ( (  _I  |`  F ) "
( dom  (  _I  |`  F )  \  {
x } ) ) )  =  ( K `
 ( F  \  { x } ) ) )
3728, 36eleq12d 2536 . . . . . . . . . 10  |-  ( x  e.  F  ->  (
( k  .x.  (
(  _I  |`  F ) `
 x ) )  e.  ( K `  ( (  _I  |`  F )
" ( dom  (  _I  |`  F )  \  { x } ) ) )  <->  ( k  .x.  x )  e.  ( K `  ( F 
\  { x }
) ) ) )
3837notbid 292 . . . . . . . . 9  |-  ( x  e.  F  ->  ( -.  ( k  .x.  (
(  _I  |`  F ) `
 x ) )  e.  ( K `  ( (  _I  |`  F )
" ( dom  (  _I  |`  F )  \  { x } ) ) )  <->  -.  (
k  .x.  x )  e.  ( K `  ( F  \  { x }
) ) ) )
3938ralbidv 2893 . . . . . . . 8  |-  ( x  e.  F  ->  ( A. k  e.  ( N  \  {  .0.  }
)  -.  ( k 
.x.  ( (  _I  |`  F ) `  x
) )  e.  ( K `  ( (  _I  |`  F ) " ( dom  (  _I  |`  F )  \  { x } ) ) )  <->  A. k  e.  ( N  \  {  .0.  } )  -.  (
k  .x.  x )  e.  ( K `  ( F  \  { x }
) ) ) )
4039ralbiia 2884 . . . . . . 7  |-  ( A. x  e.  F  A. k  e.  ( N  \  {  .0.  } )  -.  ( k  .x.  ( (  _I  |`  F ) `
 x ) )  e.  ( K `  ( (  _I  |`  F )
" ( dom  (  _I  |`  F )  \  { x } ) ) )  <->  A. x  e.  F  A. k  e.  ( N  \  {  .0.  } )  -.  (
k  .x.  x )  e.  ( K `  ( F  \  { x }
) ) )
4126, 40bitri 249 . . . . . 6  |-  ( A. x  e.  dom  (  _I  |`  F ) A. k  e.  ( N  \  {  .0.  } )  -.  (
k  .x.  ( (  _I  |`  F ) `  x ) )  e.  ( K `  (
(  _I  |`  F )
" ( dom  (  _I  |`  F )  \  { x } ) ) )  <->  A. x  e.  F  A. k  e.  ( N  \  {  .0.  } )  -.  (
k  .x.  x )  e.  ( K `  ( F  \  { x }
) ) )
4241anbi2i 692 . . . . 5  |-  ( ( (  _I  |`  F ) : dom  (  _I  |`  F ) --> B  /\  A. x  e.  dom  (  _I  |`  F ) A. k  e.  ( N  \  {  .0.  } )  -.  ( k  .x.  ( (  _I  |`  F ) `
 x ) )  e.  ( K `  ( (  _I  |`  F )
" ( dom  (  _I  |`  F )  \  { x } ) ) ) )  <->  ( (  _I  |`  F ) : dom  (  _I  |`  F ) --> B  /\  A. x  e.  F  A. k  e.  ( N  \  {  .0.  } )  -.  (
k  .x.  x )  e.  ( K `  ( F  \  { x }
) ) ) )
4325, 42syl6rbbr 264 . . . 4  |-  ( F 
C_  B  ->  (
( (  _I  |`  F ) : dom  (  _I  |`  F ) --> B  /\  A. x  e.  dom  (  _I  |`  F ) A. k  e.  ( N  \  {  .0.  } )  -.  ( k  .x.  ( (  _I  |`  F ) `
 x ) )  e.  ( K `  ( (  _I  |`  F )
" ( dom  (  _I  |`  F )  \  { x } ) ) ) )  <->  A. x  e.  F  A. k  e.  ( N  \  {  .0.  } )  -.  (
k  .x.  x )  e.  ( K `  ( F  \  { x }
) ) ) )
4443pm5.32i 635 . . 3  |-  ( ( F  C_  B  /\  ( (  _I  |`  F ) : dom  (  _I  |`  F ) --> B  /\  A. x  e.  dom  (  _I  |`  F ) A. k  e.  ( N  \  {  .0.  } )  -.  ( k  .x.  ( (  _I  |`  F ) `
 x ) )  e.  ( K `  ( (  _I  |`  F )
" ( dom  (  _I  |`  F )  \  { x } ) ) ) ) )  <-> 
( F  C_  B  /\  A. x  e.  F  A. k  e.  ( N  \  {  .0.  }
)  -.  ( k 
.x.  x )  e.  ( K `  ( F  \  { x }
) ) ) )
4544a1i 11 . 2  |-  ( W  e.  Y  ->  (
( F  C_  B  /\  ( (  _I  |`  F ) : dom  (  _I  |`  F ) --> B  /\  A. x  e.  dom  (  _I  |`  F ) A. k  e.  ( N  \  {  .0.  } )  -.  ( k  .x.  ( (  _I  |`  F ) `
 x ) )  e.  ( K `  ( (  _I  |`  F )
" ( dom  (  _I  |`  F )  \  { x } ) ) ) ) )  <-> 
( F  C_  B  /\  A. x  e.  F  A. k  e.  ( N  \  {  .0.  }
)  -.  ( k 
.x.  x )  e.  ( K `  ( F  \  { x }
) ) ) ) )
462, 16, 453bitrd 279 1  |-  ( W  e.  Y  ->  ( F  e.  (LIndS `  W
)  <->  ( F  C_  B  /\  A. x  e.  F  A. k  e.  ( N  \  {  .0.  } )  -.  (
k  .x.  x )  e.  ( K `  ( F  \  { x }
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804   _Vcvv 3106    \ cdif 3458    C_ wss 3461   {csn 4016   class class class wbr 4439    _I cid 4779   dom cdm 4988    |` cres 4990   "cima 4991   -->wf 5566   -1-1-onto->wf1o 5569   ` cfv 5570  (class class class)co 6270   Basecbs 14719  Scalarcsca 14790   .scvsca 14791   0gc0g 14932   LSpanclspn 17815   LIndF clindf 19009  LIndSclinds 19010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-lindf 19011  df-linds 19012
This theorem is referenced by:  lindsind  19022  lindfrn  19026  islbs4  19037  lindslininds  33338
  Copyright terms: Public domain W3C validator