MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islinds Structured version   Unicode version

Theorem islinds 18347
Description: Property of an independent set of vectors in terms of an independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
islinds.b  |-  B  =  ( Base `  W
)
Assertion
Ref Expression
islinds  |-  ( W  e.  V  ->  ( X  e.  (LIndS `  W
)  <->  ( X  C_  B  /\  (  _I  |`  X ) LIndF 
W ) ) )

Proof of Theorem islinds
Dummy variables  s  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3077 . . . . 5  |-  ( W  e.  V  ->  W  e.  _V )
2 fveq2 5789 . . . . . . . 8  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
32pweqd 3963 . . . . . . 7  |-  ( w  =  W  ->  ~P ( Base `  w )  =  ~P ( Base `  W
) )
4 breq2 4394 . . . . . . 7  |-  ( w  =  W  ->  (
(  _I  |`  s
) LIndF  w  <->  (  _I  |`  s
) LIndF  W ) )
53, 4rabeqbidv 3063 . . . . . 6  |-  ( w  =  W  ->  { s  e.  ~P ( Base `  w )  |  (  _I  |`  s ) LIndF  w }  =  { s  e.  ~P ( Base `  W )  |  (  _I  |`  s ) LIndF  W } )
6 df-linds 18345 . . . . . 6  |- LIndS  =  ( w  e.  _V  |->  { s  e.  ~P ( Base `  w )  |  (  _I  |`  s
) LIndF  w } )
7 fvex 5799 . . . . . . . 8  |-  ( Base `  W )  e.  _V
87pwex 4573 . . . . . . 7  |-  ~P ( Base `  W )  e. 
_V
98rabex 4541 . . . . . 6  |-  { s  e.  ~P ( Base `  W )  |  (  _I  |`  s ) LIndF  W }  e.  _V
105, 6, 9fvmpt 5873 . . . . 5  |-  ( W  e.  _V  ->  (LIndS `  W )  =  {
s  e.  ~P ( Base `  W )  |  (  _I  |`  s
) LIndF  W } )
111, 10syl 16 . . . 4  |-  ( W  e.  V  ->  (LIndS `  W )  =  {
s  e.  ~P ( Base `  W )  |  (  _I  |`  s
) LIndF  W } )
1211eleq2d 2521 . . 3  |-  ( W  e.  V  ->  ( X  e.  (LIndS `  W
)  <->  X  e.  { s  e.  ~P ( Base `  W )  |  (  _I  |`  s ) LIndF  W } ) )
13 reseq2 5203 . . . . 5  |-  ( s  =  X  ->  (  _I  |`  s )  =  (  _I  |`  X ) )
1413breq1d 4400 . . . 4  |-  ( s  =  X  ->  (
(  _I  |`  s
) LIndF  W  <->  (  _I  |`  X ) LIndF 
W ) )
1514elrab 3214 . . 3  |-  ( X  e.  { s  e. 
~P ( Base `  W
)  |  (  _I  |`  s ) LIndF  W }  <->  ( X  e.  ~P ( Base `  W )  /\  (  _I  |`  X ) LIndF 
W ) )
1612, 15syl6bb 261 . 2  |-  ( W  e.  V  ->  ( X  e.  (LIndS `  W
)  <->  ( X  e. 
~P ( Base `  W
)  /\  (  _I  |`  X ) LIndF  W ) ) )
177elpw2 4554 . . . 4  |-  ( X  e.  ~P ( Base `  W )  <->  X  C_  ( Base `  W ) )
18 islinds.b . . . . 5  |-  B  =  ( Base `  W
)
1918sseq2i 3479 . . . 4  |-  ( X 
C_  B  <->  X  C_  ( Base `  W ) )
2017, 19bitr4i 252 . . 3  |-  ( X  e.  ~P ( Base `  W )  <->  X  C_  B
)
2120anbi1i 695 . 2  |-  ( ( X  e.  ~P ( Base `  W )  /\  (  _I  |`  X ) LIndF 
W )  <->  ( X  C_  B  /\  (  _I  |`  X ) LIndF  W ) )
2216, 21syl6bb 261 1  |-  ( W  e.  V  ->  ( X  e.  (LIndS `  W
)  <->  ( X  C_  B  /\  (  _I  |`  X ) LIndF 
W ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   {crab 2799   _Vcvv 3068    C_ wss 3426   ~Pcpw 3958   class class class wbr 4390    _I cid 4729    |` cres 4940   ` cfv 5516   Basecbs 14276   LIndF clindf 18342  LIndSclinds 18343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3070  df-sbc 3285  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-op 3982  df-uni 4190  df-br 4391  df-opab 4449  df-mpt 4450  df-id 4734  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-res 4950  df-iota 5479  df-fun 5518  df-fv 5524  df-linds 18345
This theorem is referenced by:  linds1  18348  linds2  18349  islinds2  18351  lindsss  18362  lindsmm  18366  lsslinds  18369
  Copyright terms: Public domain W3C validator