MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islindf4 Structured version   Unicode version

Theorem islindf4 18999
Description: A family is independent iff it has no nontrivial representations of zero. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Hypotheses
Ref Expression
islindf4.b  |-  B  =  ( Base `  W
)
islindf4.r  |-  R  =  (Scalar `  W )
islindf4.t  |-  .x.  =  ( .s `  W )
islindf4.z  |-  .0.  =  ( 0g `  W )
islindf4.y  |-  Y  =  ( 0g `  R
)
islindf4.l  |-  L  =  ( Base `  ( R freeLMod  I ) )
Assertion
Ref Expression
islindf4  |-  ( ( W  e.  LMod  /\  I  e.  X  /\  F :
I --> B )  -> 
( F LIndF  W  <->  A. x  e.  L  ( ( W  gsumg  ( x  oF  .x.  F ) )  =  .0.  ->  x  =  ( I  X.  { Y } ) ) ) )
Distinct variable groups:    x, B    x, F    x, I    x, L    x, R    x,  .x.    x, W    x, X    x, Y    x,  .0.

Proof of Theorem islindf4
Dummy variables  j 
k  l  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raldifsni 4162 . . . . 5  |-  ( A. l  e.  ( ( Base `  R )  \  { Y } )  -.  ( ( ( invg `  R ) `
 l )  .x.  ( F `  j ) )  e.  ( (
LSpan `  W ) `  ( F " ( I 
\  { j } ) ) )  <->  A. l  e.  ( Base `  R
) ( ( ( ( invg `  R ) `  l
)  .x.  ( F `  j ) )  e.  ( ( LSpan `  W
) `  ( F " ( I  \  {
j } ) ) )  ->  l  =  Y ) )
2 simpll1 1035 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  W  e.  LMod )
3 simprll 763 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  l  e.  ( Base `  R
) )
4 ffvelrn 6030 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : I --> B  /\  j  e.  I )  ->  ( F `  j
)  e.  B )
543ad2antl3 1160 . . . . . . . . . . . . . . . . 17  |-  ( ( ( W  e.  LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  ->  ( F `  j )  e.  B
)
65adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  ( F `  j )  e.  B )
7 islindf4.b . . . . . . . . . . . . . . . . 17  |-  B  =  ( Base `  W
)
8 islindf4.r . . . . . . . . . . . . . . . . 17  |-  R  =  (Scalar `  W )
9 islindf4.t . . . . . . . . . . . . . . . . 17  |-  .x.  =  ( .s `  W )
10 eqid 2457 . . . . . . . . . . . . . . . . 17  |-  ( invg `  W )  =  ( invg `  W )
11 eqid 2457 . . . . . . . . . . . . . . . . 17  |-  ( invg `  R )  =  ( invg `  R )
12 eqid 2457 . . . . . . . . . . . . . . . . 17  |-  ( Base `  R )  =  (
Base `  R )
137, 8, 9, 10, 11, 12lmodvsinv 17808 . . . . . . . . . . . . . . . 16  |-  ( ( W  e.  LMod  /\  l  e.  ( Base `  R
)  /\  ( F `  j )  e.  B
)  ->  ( (
( invg `  R ) `  l
)  .x.  ( F `  j ) )  =  ( ( invg `  W ) `  (
l  .x.  ( F `  j ) ) ) )
142, 3, 6, 13syl3anc 1228 . . . . . . . . . . . . . . 15  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
( ( invg `  R ) `  l
)  .x.  ( F `  j ) )  =  ( ( invg `  W ) `  (
l  .x.  ( F `  j ) ) ) )
1514eqeq1d 2459 . . . . . . . . . . . . . 14  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
( ( ( invg `  R ) `
 l )  .x.  ( F `  j ) )  =  ( W 
gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) )  <->  ( ( invg `  W ) `
 ( l  .x.  ( F `  j ) ) )  =  ( W  gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) ) ) )
16 lmodgrp 17645 . . . . . . . . . . . . . . . 16  |-  ( W  e.  LMod  ->  W  e. 
Grp )
172, 16syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  W  e.  Grp )
187, 8, 9, 12lmodvscl 17655 . . . . . . . . . . . . . . . 16  |-  ( ( W  e.  LMod  /\  l  e.  ( Base `  R
)  /\  ( F `  j )  e.  B
)  ->  ( l  .x.  ( F `  j
) )  e.  B
)
192, 3, 6, 18syl3anc 1228 . . . . . . . . . . . . . . 15  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
l  .x.  ( F `  j ) )  e.  B )
20 islindf4.z . . . . . . . . . . . . . . . 16  |-  .0.  =  ( 0g `  W )
21 lmodcmn 17684 . . . . . . . . . . . . . . . . 17  |-  ( W  e.  LMod  ->  W  e. CMnd
)
222, 21syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  W  e. CMnd )
23 simpll2 1036 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  I  e.  X )
24 difexg 4604 . . . . . . . . . . . . . . . . 17  |-  ( I  e.  X  ->  (
I  \  { j } )  e.  _V )
2523, 24syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
I  \  { j } )  e.  _V )
26 simprlr 764 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )
27 elmapi 7459 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( ( Base `  R )  ^m  (
I  \  { j } ) )  -> 
y : ( I 
\  { j } ) --> ( Base `  R
) )
2826, 27syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  y : ( I  \  { j } ) --> ( Base `  R
) )
29 simpll3 1037 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  F : I --> B )
30 difss 3627 . . . . . . . . . . . . . . . . . 18  |-  ( I 
\  { j } )  C_  I
31 fssres 5757 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : I --> B  /\  ( I  \  { j } )  C_  I
)  ->  ( F  |`  ( I  \  {
j } ) ) : ( I  \  { j } ) --> B )
3229, 30, 31sylancl 662 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  ( F  |`  ( I  \  { j } ) ) : ( I 
\  { j } ) --> B )
338, 12, 9, 7, 2, 28, 32, 25lcomf 17674 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
y  oF  .x.  ( F  |`  ( I 
\  { j } ) ) ) : ( I  \  {
j } ) --> B )
34 islindf4.y . . . . . . . . . . . . . . . . 17  |-  Y  =  ( 0g `  R
)
35 simprr 757 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  y finSupp  Y )
368, 12, 9, 7, 2, 28, 32, 25, 20, 34, 35lcomfsupp 17676 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
y  oF  .x.  ( F  |`  ( I 
\  { j } ) ) ) finSupp  .0.  )
377, 20, 22, 25, 33, 36gsumcl 17049 . . . . . . . . . . . . . . 15  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  ( W  gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) )  e.  B )
38 eqid 2457 . . . . . . . . . . . . . . . 16  |-  ( +g  `  W )  =  ( +g  `  W )
397, 38, 20, 10grpinvid2 16225 . . . . . . . . . . . . . . 15  |-  ( ( W  e.  Grp  /\  ( l  .x.  ( F `  j )
)  e.  B  /\  ( W  gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) )  e.  B )  ->  ( ( ( invg `  W
) `  ( l  .x.  ( F `  j
) ) )  =  ( W  gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) )  <->  ( ( W 
gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) ) ( +g  `  W
) ( l  .x.  ( F `  j ) ) )  =  .0.  ) )
4017, 19, 37, 39syl3anc 1228 . . . . . . . . . . . . . 14  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
( ( invg `  W ) `  (
l  .x.  ( F `  j ) ) )  =  ( W  gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) )  <->  ( ( W  gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) ) ( +g  `  W
) ( l  .x.  ( F `  j ) ) )  =  .0.  ) )
41 simplr 755 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  j  e.  I )
42 fsnunf2 6111 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y : ( I 
\  { j } ) --> ( Base `  R
)  /\  j  e.  I  /\  l  e.  (
Base `  R )
)  ->  ( y  u.  { <. j ,  l
>. } ) : I --> ( Base `  R
) )
4328, 41, 3, 42syl3anc 1228 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
y  u.  { <. j ,  l >. } ) : I --> ( Base `  R ) )
448, 12, 9, 7, 2, 43, 29, 23lcomf 17674 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
( y  u.  { <. j ,  l >. } )  oF  .x.  F ) : I --> B )
45 simpr 461 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( W  e.  LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  ->  j  e.  I )
46 simpl 457 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  ->  l  e.  ( Base `  R
) )
4745, 46anim12i 566 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( l  e.  ( Base `  R
)  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) ) )  -> 
( j  e.  I  /\  l  e.  ( Base `  R ) ) )
48 elmapfun 7461 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  e.  ( ( Base `  R )  ^m  (
I  \  { j } ) )  ->  Fun  y )
49 fdm 5741 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( y : ( I  \  { j } ) --> ( Base `  R
)  ->  dom  y  =  ( I  \  {
j } ) )
50 neldifsnd 4160 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( dom  y  =  ( I 
\  { j } )  ->  -.  j  e.  ( I  \  {
j } ) )
51 df-nel 2655 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( j  e/  dom  y  <->  -.  j  e.  dom  y )
52 eleq2 2530 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( dom  y  =  ( I 
\  { j } )  ->  ( j  e.  dom  y  <->  j  e.  ( I  \  { j } ) ) )
5352notbid 294 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( dom  y  =  ( I 
\  { j } )  ->  ( -.  j  e.  dom  y  <->  -.  j  e.  ( I  \  {
j } ) ) )
5451, 53syl5bb 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( dom  y  =  ( I 
\  { j } )  ->  ( j  e/  dom  y  <->  -.  j  e.  ( I  \  {
j } ) ) )
5550, 54mpbird 232 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( dom  y  =  ( I 
\  { j } )  ->  j  e/  dom  y )
5649, 55syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y : ( I  \  { j } ) --> ( Base `  R
)  ->  j  e/  dom  y )
5727, 56syl 16 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  e.  ( ( Base `  R )  ^m  (
I  \  { j } ) )  -> 
j  e/  dom  y )
5848, 57jca 532 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  e.  ( ( Base `  R )  ^m  (
I  \  { j } ) )  -> 
( Fun  y  /\  j  e/  dom  y ) )
5958adantl 466 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  ->  ( Fun  y  /\  j  e/  dom  y ) )
6059adantl 466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( l  e.  ( Base `  R
)  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) ) )  -> 
( Fun  y  /\  j  e/  dom  y ) )
6147, 60jca 532 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( l  e.  ( Base `  R
)  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) ) )  -> 
( ( j  e.  I  /\  l  e.  ( Base `  R
) )  /\  ( Fun  y  /\  j  e/  dom  y ) ) )
62 funsnfsupp 7871 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( j  e.  I  /\  l  e.  ( Base `  R ) )  /\  ( Fun  y  /\  j  e/  dom  y
) )  ->  (
( y  u.  { <. j ,  l >. } ) finSupp  Y  <->  y finSupp  Y ) )
6362bicomd 201 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( j  e.  I  /\  l  e.  ( Base `  R ) )  /\  ( Fun  y  /\  j  e/  dom  y
) )  ->  (
y finSupp  Y  <->  ( y  u. 
{ <. j ,  l
>. } ) finSupp  Y ) )
6461, 63syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( l  e.  ( Base `  R
)  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) ) )  -> 
( y finSupp  Y  <->  ( y  u.  { <. j ,  l
>. } ) finSupp  Y ) )
6564biimpd 207 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( l  e.  ( Base `  R
)  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) ) )  -> 
( y finSupp  Y  ->  ( y  u.  { <. j ,  l >. } ) finSupp  Y ) )
6665impr 619 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
y  u.  { <. j ,  l >. } ) finSupp  Y )
678, 12, 9, 7, 2, 43, 29, 23, 20, 34, 66lcomfsupp 17676 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
( y  u.  { <. j ,  l >. } )  oF  .x.  F ) finSupp  .0.  )
68 incom 3687 . . . . . . . . . . . . . . . . . . 19  |-  ( ( I  \  { j } )  i^i  {
j } )  =  ( { j }  i^i  ( I  \  { j } ) )
69 disjdif 3903 . . . . . . . . . . . . . . . . . . 19  |-  ( { j }  i^i  (
I  \  { j } ) )  =  (/)
7068, 69eqtri 2486 . . . . . . . . . . . . . . . . . 18  |-  ( ( I  \  { j } )  i^i  {
j } )  =  (/)
7170a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
( I  \  {
j } )  i^i 
{ j } )  =  (/) )
72 difsnid 4178 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  I  ->  (
( I  \  {
j } )  u. 
{ j } )  =  I )
7372eqcomd 2465 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  I  ->  I  =  ( ( I 
\  { j } )  u.  { j } ) )
7441, 73syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  I  =  ( ( I 
\  { j } )  u.  { j } ) )
757, 20, 38, 22, 23, 44, 67, 71, 74gsumsplit 17072 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  ( W  gsumg  ( ( y  u. 
{ <. j ,  l
>. } )  oF  .x.  F ) )  =  ( ( W 
gsumg  ( ( ( y  u.  { <. j ,  l >. } )  oF  .x.  F
)  |`  ( I  \  { j } ) ) ) ( +g  `  W ) ( W 
gsumg  ( ( ( y  u.  { <. j ,  l >. } )  oF  .x.  F
)  |`  { j } ) ) ) )
76 vex 3112 . . . . . . . . . . . . . . . . . . . . 21  |-  y  e. 
_V
77 snex 4697 . . . . . . . . . . . . . . . . . . . . 21  |-  { <. j ,  l >. }  e.  _V
7876, 77unex 6597 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  u.  { <. j ,  l >. } )  e.  _V
79 simpl3 1001 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( W  e.  LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  ->  F :
I --> B )
80 simpl2 1000 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( W  e.  LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  ->  I  e.  X )
81 fex 6146 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( F : I --> B  /\  I  e.  X )  ->  F  e.  _V )
8279, 80, 81syl2anc 661 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( W  e.  LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  ->  F  e.  _V )
8382adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  F  e.  _V )
84 offres 6794 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  u.  { <. j ,  l >. } )  e.  _V  /\  F  e.  _V )  ->  ( ( ( y  u.  { <. j ,  l >. } )  oF  .x.  F
)  |`  ( I  \  { j } ) )  =  ( ( ( y  u.  { <. j ,  l >. } )  |`  (
I  \  { j } ) )  oF  .x.  ( F  |`  ( I  \  {
j } ) ) ) )
8578, 83, 84sylancr 663 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
( ( y  u. 
{ <. j ,  l
>. } )  oF  .x.  F )  |`  ( I  \  { j } ) )  =  ( ( ( y  u.  { <. j ,  l >. } )  |`  ( I  \  {
j } ) )  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) )
86 ffn 5737 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y : ( I  \  { j } ) --> ( Base `  R
)  ->  y  Fn  ( I  \  { j } ) )
8728, 86syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  y  Fn  ( I  \  {
j } ) )
88 neldifsn 4159 . . . . . . . . . . . . . . . . . . . . 21  |-  -.  j  e.  ( I  \  {
j } )
89 fsnunres 6113 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  Fn  ( I 
\  { j } )  /\  -.  j  e.  ( I  \  {
j } ) )  ->  ( ( y  u.  { <. j ,  l >. } )  |`  ( I  \  {
j } ) )  =  y )
9087, 88, 89sylancl 662 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
( y  u.  { <. j ,  l >. } )  |`  (
I  \  { j } ) )  =  y )
9190oveq1d 6311 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
( ( y  u. 
{ <. j ,  l
>. } )  |`  (
I  \  { j } ) )  oF  .x.  ( F  |`  ( I  \  {
j } ) ) )  =  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) )
9285, 91eqtrd 2498 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
( ( y  u. 
{ <. j ,  l
>. } )  oF  .x.  F )  |`  ( I  \  { j } ) )  =  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) )
9392oveq2d 6312 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  ( W  gsumg  ( ( ( y  u.  { <. j ,  l >. } )  oF  .x.  F
)  |`  ( I  \  { j } ) ) )  =  ( W  gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) ) )
94 ffn 5737 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( y  u.  { <. j ,  l >. } )  oF  .x.  F ) : I --> B  ->  (
( y  u.  { <. j ,  l >. } )  oF  .x.  F )  Fn  I )
9544, 94syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
( y  u.  { <. j ,  l >. } )  oF  .x.  F )  Fn  I )
96 fnressn 6084 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( y  u. 
{ <. j ,  l
>. } )  oF  .x.  F )  Fn  I  /\  j  e.  I )  ->  (
( ( y  u. 
{ <. j ,  l
>. } )  oF  .x.  F )  |`  { j } )  =  { <. j ,  ( ( ( y  u.  { <. j ,  l >. } )  oF  .x.  F
) `  j ) >. } )
9795, 41, 96syl2anc 661 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
( ( y  u. 
{ <. j ,  l
>. } )  oF  .x.  F )  |`  { j } )  =  { <. j ,  ( ( ( y  u.  { <. j ,  l >. } )  oF  .x.  F
) `  j ) >. } )
98 ffn 5737 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y  u.  { <. j ,  l >. } ) : I --> ( Base `  R )  ->  (
y  u.  { <. j ,  l >. } )  Fn  I )
9943, 98syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
y  u.  { <. j ,  l >. } )  Fn  I )
100 ffn 5737 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( F : I --> B  ->  F  Fn  I )
10129, 100syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  F  Fn  I )
102 fnfvof 6552 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( y  u. 
{ <. j ,  l
>. } )  Fn  I  /\  F  Fn  I
)  /\  ( I  e.  X  /\  j  e.  I ) )  -> 
( ( ( y  u.  { <. j ,  l >. } )  oF  .x.  F
) `  j )  =  ( ( ( y  u.  { <. j ,  l >. } ) `
 j )  .x.  ( F `  j ) ) )
10399, 101, 23, 41, 102syl22anc 1229 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
( ( y  u. 
{ <. j ,  l
>. } )  oF  .x.  F ) `  j )  =  ( ( ( y  u. 
{ <. j ,  l
>. } ) `  j
)  .x.  ( F `  j ) ) )
104 fndm 5686 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( y  Fn  ( I  \  { j } )  ->  dom  y  =  ( I  \  { j } ) )
105104eleq2d 2527 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  Fn  ( I  \  { j } )  ->  ( j  e. 
dom  y  <->  j  e.  ( I  \  { j } ) ) )
10688, 105mtbiri 303 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  Fn  ( I  \  { j } )  ->  -.  j  e.  dom  y )
107 vex 3112 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  j  e. 
_V
108 vex 3112 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  l  e. 
_V
109 fsnunfv 6112 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( j  e.  _V  /\  l  e.  _V  /\  -.  j  e.  dom  y )  ->  ( ( y  u.  { <. j ,  l >. } ) `
 j )  =  l )
110107, 108, 109mp3an12 1314 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( -.  j  e.  dom  y  ->  ( ( y  u. 
{ <. j ,  l
>. } ) `  j
)  =  l )
11187, 106, 1103syl 20 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
( y  u.  { <. j ,  l >. } ) `  j
)  =  l )
112111oveq1d 6311 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
( ( y  u. 
{ <. j ,  l
>. } ) `  j
)  .x.  ( F `  j ) )  =  ( l  .x.  ( F `  j )
) )
113103, 112eqtrd 2498 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
( ( y  u. 
{ <. j ,  l
>. } )  oF  .x.  F ) `  j )  =  ( l  .x.  ( F `
 j ) ) )
114113opeq2d 4226 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  <. j ,  ( ( ( y  u.  { <. j ,  l >. } )  oF  .x.  F
) `  j ) >.  =  <. j ,  ( l  .x.  ( F `
 j ) )
>. )
115114sneqd 4044 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  { <. j ,  ( ( ( y  u.  { <. j ,  l >. } )  oF  .x.  F
) `  j ) >. }  =  { <. j ,  ( l  .x.  ( F `  j ) ) >. } )
116 ovex 6324 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( l 
.x.  ( F `  j ) )  e. 
_V
117 fmptsn 6092 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( j  e.  _V  /\  ( l  .x.  ( F `  j )
)  e.  _V )  ->  { <. j ,  ( l  .x.  ( F `
 j ) )
>. }  =  ( x  e.  { j } 
|->  ( l  .x.  ( F `  j )
) ) )
118107, 116, 117mp2an 672 . . . . . . . . . . . . . . . . . . . . 21  |-  { <. j ,  ( l  .x.  ( F `  j ) ) >. }  =  ( x  e.  { j }  |->  ( l  .x.  ( F `  j ) ) )
119118a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  { <. j ,  ( l  .x.  ( F `  j ) ) >. }  =  ( x  e.  { j }  |->  ( l  .x.  ( F `  j ) ) ) )
12097, 115, 1193eqtrd 2502 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
( ( y  u. 
{ <. j ,  l
>. } )  oF  .x.  F )  |`  { j } )  =  ( x  e. 
{ j }  |->  ( l  .x.  ( F `
 j ) ) ) )
121120oveq2d 6312 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  ( W  gsumg  ( ( ( y  u.  { <. j ,  l >. } )  oF  .x.  F
)  |`  { j } ) )  =  ( W  gsumg  ( x  e.  {
j }  |->  ( l 
.x.  ( F `  j ) ) ) ) )
122 cmnmnd 16939 . . . . . . . . . . . . . . . . . . . 20  |-  ( W  e. CMnd  ->  W  e.  Mnd )
12322, 122syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  W  e.  Mnd )
124107a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  j  e.  _V )
125 eqidd 2458 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  j  ->  (
l  .x.  ( F `  j ) )  =  ( l  .x.  ( F `  j )
) )
1267, 125gsumsn 17107 . . . . . . . . . . . . . . . . . . 19  |-  ( ( W  e.  Mnd  /\  j  e.  _V  /\  (
l  .x.  ( F `  j ) )  e.  B )  ->  ( W  gsumg  ( x  e.  {
j }  |->  ( l 
.x.  ( F `  j ) ) ) )  =  ( l 
.x.  ( F `  j ) ) )
127123, 124, 19, 126syl3anc 1228 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  ( W  gsumg  ( x  e.  {
j }  |->  ( l 
.x.  ( F `  j ) ) ) )  =  ( l 
.x.  ( F `  j ) ) )
128121, 127eqtrd 2498 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  ( W  gsumg  ( ( ( y  u.  { <. j ,  l >. } )  oF  .x.  F
)  |`  { j } ) )  =  ( l  .x.  ( F `
 j ) ) )
12993, 128oveq12d 6314 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
( W  gsumg  ( ( ( y  u.  { <. j ,  l >. } )  oF  .x.  F
)  |`  ( I  \  { j } ) ) ) ( +g  `  W ) ( W 
gsumg  ( ( ( y  u.  { <. j ,  l >. } )  oF  .x.  F
)  |`  { j } ) ) )  =  ( ( W  gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) ) ( +g  `  W ) ( l  .x.  ( F `  j )
) ) )
13075, 129eqtr2d 2499 . . . . . . . . . . . . . . 15  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
( W  gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) ) ( +g  `  W
) ( l  .x.  ( F `  j ) ) )  =  ( W  gsumg  ( ( y  u. 
{ <. j ,  l
>. } )  oF  .x.  F ) ) )
131130eqeq1d 2459 . . . . . . . . . . . . . 14  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
( ( W  gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) ) ( +g  `  W ) ( l  .x.  ( F `  j )
) )  =  .0.  <->  ( W  gsumg  ( ( y  u. 
{ <. j ,  l
>. } )  oF  .x.  F ) )  =  .0.  ) )
13215, 40, 1313bitrd 279 . . . . . . . . . . . . 13  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
( ( ( invg `  R ) `
 l )  .x.  ( F `  j ) )  =  ( W 
gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) )  <->  ( W  gsumg  ( ( y  u.  { <. j ,  l >. } )  oF  .x.  F
) )  =  .0.  ) )
133111eqcomd 2465 . . . . . . . . . . . . . 14  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  l  =  ( ( y  u.  { <. j ,  l >. } ) `
 j ) )
134133eqeq1d 2459 . . . . . . . . . . . . 13  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
l  =  Y  <->  ( (
y  u.  { <. j ,  l >. } ) `
 j )  =  Y ) )
135132, 134imbi12d 320 . . . . . . . . . . . 12  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( (
l  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) )  /\  y finSupp  Y ) )  ->  (
( ( ( ( invg `  R
) `  l )  .x.  ( F `  j
) )  =  ( W  gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) )  ->  l  =  Y )  <->  ( ( W  gsumg  ( ( y  u. 
{ <. j ,  l
>. } )  oF  .x.  F ) )  =  .0.  ->  (
( y  u.  { <. j ,  l >. } ) `  j
)  =  Y ) ) )
136135anassrs 648 . . . . . . . . . . 11  |-  ( ( ( ( ( W  e.  LMod  /\  I  e.  X  /\  F :
I --> B )  /\  j  e.  I )  /\  ( l  e.  (
Base `  R )  /\  y  e.  (
( Base `  R )  ^m  ( I  \  {
j } ) ) ) )  /\  y finSupp  Y )  ->  ( (
( ( ( invg `  R ) `
 l )  .x.  ( F `  j ) )  =  ( W 
gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) )  ->  l  =  Y )  <->  ( ( W  gsumg  ( ( y  u. 
{ <. j ,  l
>. } )  oF  .x.  F ) )  =  .0.  ->  (
( y  u.  { <. j ,  l >. } ) `  j
)  =  Y ) ) )
137136pm5.74da 687 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( l  e.  ( Base `  R
)  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) ) )  -> 
( ( y finSupp  Y  ->  ( ( ( ( invg `  R
) `  l )  .x.  ( F `  j
) )  =  ( W  gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) )  ->  l  =  Y ) )  <->  ( y finSupp  Y  ->  ( ( W 
gsumg  ( ( y  u. 
{ <. j ,  l
>. } )  oF  .x.  F ) )  =  .0.  ->  (
( y  u.  { <. j ,  l >. } ) `  j
)  =  Y ) ) ) )
138 impexp 446 . . . . . . . . . . 11  |-  ( ( ( y finSupp  Y  /\  ( ( ( invg `  R ) `
 l )  .x.  ( F `  j ) )  =  ( W 
gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) ) )  ->  l  =  Y )  <->  ( y finSupp  Y  ->  ( ( ( ( invg `  R ) `  l
)  .x.  ( F `  j ) )  =  ( W  gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) )  ->  l  =  Y ) ) )
139138a1i 11 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( l  e.  ( Base `  R
)  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) ) )  -> 
( ( ( y finSupp  Y  /\  ( ( ( invg `  R
) `  l )  .x.  ( F `  j
) )  =  ( W  gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) ) )  ->  l  =  Y )  <->  ( y finSupp  Y  ->  ( ( ( ( invg `  R ) `  l
)  .x.  ( F `  j ) )  =  ( W  gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) )  ->  l  =  Y ) ) ) )
14064bicomd 201 . . . . . . . . . . 11  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( l  e.  ( Base `  R
)  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) ) )  -> 
( ( y  u. 
{ <. j ,  l
>. } ) finSupp  Y  <->  y finSupp  Y ) )
141140imbi1d 317 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( l  e.  ( Base `  R
)  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) ) )  -> 
( ( ( y  u.  { <. j ,  l >. } ) finSupp  Y  ->  ( ( W 
gsumg  ( ( y  u. 
{ <. j ,  l
>. } )  oF  .x.  F ) )  =  .0.  ->  (
( y  u.  { <. j ,  l >. } ) `  j
)  =  Y ) )  <->  ( y finSupp  Y  ->  ( ( W  gsumg  ( ( y  u.  { <. j ,  l >. } )  oF  .x.  F
) )  =  .0. 
->  ( ( y  u. 
{ <. j ,  l
>. } ) `  j
)  =  Y ) ) ) )
142137, 139, 1413bitr4d 285 . . . . . . . . 9  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  ( l  e.  ( Base `  R
)  /\  y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) ) )  -> 
( ( ( y finSupp  Y  /\  ( ( ( invg `  R
) `  l )  .x.  ( F `  j
) )  =  ( W  gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) ) )  ->  l  =  Y )  <->  ( (
y  u.  { <. j ,  l >. } ) finSupp  Y  ->  ( ( W 
gsumg  ( ( y  u. 
{ <. j ,  l
>. } )  oF  .x.  F ) )  =  .0.  ->  (
( y  u.  { <. j ,  l >. } ) `  j
)  =  Y ) ) ) )
1431422ralbidva 2899 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  ->  ( A. l  e.  ( Base `  R ) A. y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) ( ( y finSupp  Y  /\  ( ( ( invg `  R
) `  l )  .x.  ( F `  j
) )  =  ( W  gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) ) )  ->  l  =  Y )  <->  A. l  e.  ( Base `  R
) A. y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) ( ( y  u.  { <. j ,  l >. } ) finSupp  Y  ->  ( ( W 
gsumg  ( ( y  u. 
{ <. j ,  l
>. } )  oF  .x.  F ) )  =  .0.  ->  (
( y  u.  { <. j ,  l >. } ) `  j
)  =  Y ) ) ) )
144 breq1 4459 . . . . . . . . . . 11  |-  ( x  =  ( y  u. 
{ <. j ,  l
>. } )  ->  (
x finSupp  Y  <->  ( y  u. 
{ <. j ,  l
>. } ) finSupp  Y ) )
145 oveq1 6303 . . . . . . . . . . . . . 14  |-  ( x  =  ( y  u. 
{ <. j ,  l
>. } )  ->  (
x  oF  .x.  F )  =  ( ( y  u.  { <. j ,  l >. } )  oF  .x.  F ) )
146145oveq2d 6312 . . . . . . . . . . . . 13  |-  ( x  =  ( y  u. 
{ <. j ,  l
>. } )  ->  ( W  gsumg  ( x  oF  .x.  F ) )  =  ( W  gsumg  ( ( y  u.  { <. j ,  l >. } )  oF  .x.  F
) ) )
147146eqeq1d 2459 . . . . . . . . . . . 12  |-  ( x  =  ( y  u. 
{ <. j ,  l
>. } )  ->  (
( W  gsumg  ( x  oF  .x.  F ) )  =  .0.  <->  ( W  gsumg  ( ( y  u.  { <. j ,  l >. } )  oF  .x.  F ) )  =  .0.  ) )
148 fveq1 5871 . . . . . . . . . . . . 13  |-  ( x  =  ( y  u. 
{ <. j ,  l
>. } )  ->  (
x `  j )  =  ( ( y  u.  { <. j ,  l >. } ) `
 j ) )
149148eqeq1d 2459 . . . . . . . . . . . 12  |-  ( x  =  ( y  u. 
{ <. j ,  l
>. } )  ->  (
( x `  j
)  =  Y  <->  ( (
y  u.  { <. j ,  l >. } ) `
 j )  =  Y ) )
150147, 149imbi12d 320 . . . . . . . . . . 11  |-  ( x  =  ( y  u. 
{ <. j ,  l
>. } )  ->  (
( ( W  gsumg  ( x  oF  .x.  F
) )  =  .0. 
->  ( x `  j
)  =  Y )  <-> 
( ( W  gsumg  ( ( y  u.  { <. j ,  l >. } )  oF  .x.  F
) )  =  .0. 
->  ( ( y  u. 
{ <. j ,  l
>. } ) `  j
)  =  Y ) ) )
151144, 150imbi12d 320 . . . . . . . . . 10  |-  ( x  =  ( y  u. 
{ <. j ,  l
>. } )  ->  (
( x finSupp  Y  ->  ( ( W  gsumg  ( x  oF  .x.  F ) )  =  .0.  ->  (
x `  j )  =  Y ) )  <->  ( (
y  u.  { <. j ,  l >. } ) finSupp  Y  ->  ( ( W 
gsumg  ( ( y  u. 
{ <. j ,  l
>. } )  oF  .x.  F ) )  =  .0.  ->  (
( y  u.  { <. j ,  l >. } ) `  j
)  =  Y ) ) ) )
152151ralxpmap 7487 . . . . . . . . 9  |-  ( j  e.  I  ->  ( A. x  e.  (
( Base `  R )  ^m  I ) ( x finSupp  Y  ->  ( ( W 
gsumg  ( x  oF  .x.  F ) )  =  .0.  ->  ( x `  j )  =  Y ) )  <->  A. l  e.  ( Base `  R
) A. y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) ( ( y  u.  { <. j ,  l >. } ) finSupp  Y  ->  ( ( W 
gsumg  ( ( y  u. 
{ <. j ,  l
>. } )  oF  .x.  F ) )  =  .0.  ->  (
( y  u.  { <. j ,  l >. } ) `  j
)  =  Y ) ) ) )
153152adantl 466 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  ->  ( A. x  e.  ( ( Base `  R )  ^m  I ) ( x finSupp  Y  ->  ( ( W 
gsumg  ( x  oF  .x.  F ) )  =  .0.  ->  ( x `  j )  =  Y ) )  <->  A. l  e.  ( Base `  R
) A. y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) ( ( y  u.  { <. j ,  l >. } ) finSupp  Y  ->  ( ( W 
gsumg  ( ( y  u. 
{ <. j ,  l
>. } )  oF  .x.  F ) )  =  .0.  ->  (
( y  u.  { <. j ,  l >. } ) `  j
)  =  Y ) ) ) )
154143, 153bitr4d 256 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  ->  ( A. l  e.  ( Base `  R ) A. y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) ( ( y finSupp  Y  /\  ( ( ( invg `  R
) `  l )  .x.  ( F `  j
) )  =  ( W  gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) ) )  ->  l  =  Y )  <->  A. x  e.  ( ( Base `  R
)  ^m  I )
( x finSupp  Y  ->  ( ( W  gsumg  ( x  oF  .x.  F ) )  =  .0.  ->  (
x `  j )  =  Y ) ) ) )
155 breq1 4459 . . . . . . . 8  |-  ( z  =  x  ->  (
z finSupp  Y  <->  x finSupp  Y ) )
156155ralrab 3261 . . . . . . 7  |-  ( A. x  e.  { z  e.  ( ( Base `  R
)  ^m  I )  |  z finSupp  Y }  (
( W  gsumg  ( x  oF  .x.  F ) )  =  .0.  ->  (
x `  j )  =  Y )  <->  A. x  e.  ( ( Base `  R
)  ^m  I )
( x finSupp  Y  ->  ( ( W  gsumg  ( x  oF  .x.  F ) )  =  .0.  ->  (
x `  j )  =  Y ) ) )
157154, 156syl6bbr 263 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  ->  ( A. l  e.  ( Base `  R ) A. y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) ( ( y finSupp  Y  /\  ( ( ( invg `  R
) `  l )  .x.  ( F `  j
) )  =  ( W  gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) ) )  ->  l  =  Y )  <->  A. x  e.  { z  e.  ( ( Base `  R
)  ^m  I )  |  z finSupp  Y }  (
( W  gsumg  ( x  oF  .x.  F ) )  =  .0.  ->  (
x `  j )  =  Y ) ) )
158 resima 5316 . . . . . . . . . . . . 13  |-  ( ( F  |`  ( I  \  { j } ) ) " ( I 
\  { j } ) )  =  ( F " ( I 
\  { j } ) )
159158eqcomi 2470 . . . . . . . . . . . 12  |-  ( F
" ( I  \  { j } ) )  =  ( ( F  |`  ( I  \  { j } ) ) " ( I 
\  { j } ) )
160159fveq2i 5875 . . . . . . . . . . 11  |-  ( (
LSpan `  W ) `  ( F " ( I 
\  { j } ) ) )  =  ( ( LSpan `  W
) `  ( ( F  |`  ( I  \  { j } ) ) " ( I 
\  { j } ) ) )
161160eleq2i 2535 . . . . . . . . . 10  |-  ( ( ( ( invg `  R ) `  l
)  .x.  ( F `  j ) )  e.  ( ( LSpan `  W
) `  ( F " ( I  \  {
j } ) ) )  <->  ( ( ( invg `  R
) `  l )  .x.  ( F `  j
) )  e.  ( ( LSpan `  W ) `  ( ( F  |`  ( I  \  { j } ) ) "
( I  \  {
j } ) ) ) )
162 eqid 2457 . . . . . . . . . . 11  |-  ( LSpan `  W )  =  (
LSpan `  W )
16379, 30, 31sylancl 662 . . . . . . . . . . 11  |-  ( ( ( W  e.  LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  ->  ( F  |`  ( I  \  {
j } ) ) : ( I  \  { j } ) --> B )
164 simpl1 999 . . . . . . . . . . 11  |-  ( ( ( W  e.  LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  ->  W  e.  LMod )
165243ad2ant2 1018 . . . . . . . . . . . 12  |-  ( ( W  e.  LMod  /\  I  e.  X  /\  F :
I --> B )  -> 
( I  \  {
j } )  e. 
_V )
166165adantr 465 . . . . . . . . . . 11  |-  ( ( ( W  e.  LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  ->  ( I  \  { j } )  e.  _V )
167162, 7, 12, 8, 34, 9, 163, 164, 166ellspd 18962 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  ->  ( (
( ( invg `  R ) `  l
)  .x.  ( F `  j ) )  e.  ( ( LSpan `  W
) `  ( ( F  |`  ( I  \  { j } ) ) " ( I 
\  { j } ) ) )  <->  E. y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) ( y finSupp  Y  /\  ( ( ( invg `  R ) `
 l )  .x.  ( F `  j ) )  =  ( W 
gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) ) ) ) )
168161, 167syl5bb 257 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  ->  ( (
( ( invg `  R ) `  l
)  .x.  ( F `  j ) )  e.  ( ( LSpan `  W
) `  ( F " ( I  \  {
j } ) ) )  <->  E. y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) ( y finSupp  Y  /\  ( ( ( invg `  R ) `
 l )  .x.  ( F `  j ) )  =  ( W 
gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) ) ) ) )
169168imbi1d 317 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  ->  ( (
( ( ( invg `  R ) `
 l )  .x.  ( F `  j ) )  e.  ( (
LSpan `  W ) `  ( F " ( I 
\  { j } ) ) )  -> 
l  =  Y )  <-> 
( E. y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) ( y finSupp  Y  /\  ( ( ( invg `  R ) `
 l )  .x.  ( F `  j ) )  =  ( W 
gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) ) )  ->  l  =  Y ) ) )
170 r19.23v 2937 . . . . . . . 8  |-  ( A. y  e.  ( ( Base `  R )  ^m  ( I  \  { j } ) ) ( ( y finSupp  Y  /\  ( ( ( invg `  R ) `
 l )  .x.  ( F `  j ) )  =  ( W 
gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) ) )  ->  l  =  Y )  <->  ( E. y  e.  ( ( Base `  R )  ^m  ( I  \  { j } ) ) ( y finSupp  Y  /\  (
( ( invg `  R ) `  l
)  .x.  ( F `  j ) )  =  ( W  gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) ) )  ->  l  =  Y ) )
171169, 170syl6bbr 263 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  ->  ( (
( ( ( invg `  R ) `
 l )  .x.  ( F `  j ) )  e.  ( (
LSpan `  W ) `  ( F " ( I 
\  { j } ) ) )  -> 
l  =  Y )  <->  A. y  e.  (
( Base `  R )  ^m  ( I  \  {
j } ) ) ( ( y finSupp  Y  /\  ( ( ( invg `  R ) `
 l )  .x.  ( F `  j ) )  =  ( W 
gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) ) )  ->  l  =  Y ) ) )
172171ralbidv 2896 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  ->  ( A. l  e.  ( Base `  R ) ( ( ( ( invg `  R ) `  l
)  .x.  ( F `  j ) )  e.  ( ( LSpan `  W
) `  ( F " ( I  \  {
j } ) ) )  ->  l  =  Y )  <->  A. l  e.  ( Base `  R
) A. y  e.  ( ( Base `  R
)  ^m  ( I  \  { j } ) ) ( ( y finSupp  Y  /\  ( ( ( invg `  R
) `  l )  .x.  ( F `  j
) )  =  ( W  gsumg  ( y  oF  .x.  ( F  |`  ( I  \  { j } ) ) ) ) )  ->  l  =  Y ) ) )
173 fvex 5882 . . . . . . . . . . . 12  |-  (Scalar `  W )  e.  _V
1748, 173eqeltri 2541 . . . . . . . . . . 11  |-  R  e. 
_V
175 eqid 2457 . . . . . . . . . . . 12  |-  ( R freeLMod  I )  =  ( R freeLMod  I )
176 eqid 2457 . . . . . . . . . . . 12  |-  { z  e.  ( ( Base `  R )  ^m  I
)  |  z finSupp  Y }  =  { z  e.  ( ( Base `  R
)  ^m  I )  |  z finSupp  Y }
177175, 12, 34, 176frlmbas 18912 . . . . . . . . . . 11  |-  ( ( R  e.  _V  /\  I  e.  X )  ->  { z  e.  ( ( Base `  R
)  ^m  I )  |  z finSupp  Y }  =  ( Base `  ( R freeLMod  I ) ) )
178174, 177mpan 670 . . . . . . . . . 10  |-  ( I  e.  X  ->  { z  e.  ( ( Base `  R )  ^m  I
)  |  z finSupp  Y }  =  ( Base `  ( R freeLMod  I )
) )
1791783ad2ant2 1018 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  I  e.  X  /\  F :
I --> B )  ->  { z  e.  ( ( Base `  R
)  ^m  I )  |  z finSupp  Y }  =  ( Base `  ( R freeLMod  I ) ) )
180179adantr 465 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  ->  { z  e.  ( ( Base `  R
)  ^m  I )  |  z finSupp  Y }  =  ( Base `  ( R freeLMod  I ) ) )
181 islindf4.l . . . . . . . 8  |-  L  =  ( Base `  ( R freeLMod  I ) )
182180, 181syl6reqr 2517 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  ->  L  =  { z  e.  ( ( Base `  R
)  ^m  I )  |  z finSupp  Y } )
183182raleqdv 3060 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  ->  ( A. x  e.  L  (
( W  gsumg  ( x  oF  .x.  F ) )  =  .0.  ->  (
x `  j )  =  Y )  <->  A. x  e.  { z  e.  ( ( Base `  R
)  ^m  I )  |  z finSupp  Y }  (
( W  gsumg  ( x  oF  .x.  F ) )  =  .0.  ->  (
x `  j )  =  Y ) ) )
184157, 172, 1833bitr4d 285 . . . . 5  |-  ( ( ( W  e.  LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  ->  ( A. l  e.  ( Base `  R ) ( ( ( ( invg `  R ) `  l
)  .x.  ( F `  j ) )  e.  ( ( LSpan `  W
) `  ( F " ( I  \  {
j } ) ) )  ->  l  =  Y )  <->  A. x  e.  L  ( ( W  gsumg  ( x  oF  .x.  F ) )  =  .0.  ->  (
x `  j )  =  Y ) ) )
1851, 184syl5bb 257 . . . 4  |-  ( ( ( W  e.  LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  ->  ( A. l  e.  ( ( Base `  R )  \  { Y } )  -.  ( ( ( invg `  R ) `
 l )  .x.  ( F `  j ) )  e.  ( (
LSpan `  W ) `  ( F " ( I 
\  { j } ) ) )  <->  A. x  e.  L  ( ( W  gsumg  ( x  oF  .x.  F ) )  =  .0.  ->  (
x `  j )  =  Y ) ) )
1868lmodfgrp 17647 . . . . . . . 8  |-  ( W  e.  LMod  ->  R  e. 
Grp )
18712, 34, 11grpinvnzcl 16236 . . . . . . . 8  |-  ( ( R  e.  Grp  /\  l  e.  ( ( Base `  R )  \  { Y } ) )  ->  ( ( invg `  R ) `
 l )  e.  ( ( Base `  R
)  \  { Y } ) )
188186, 187sylan 471 . . . . . . 7  |-  ( ( W  e.  LMod  /\  l  e.  ( ( Base `  R
)  \  { Y } ) )  -> 
( ( invg `  R ) `  l
)  e.  ( (
Base `  R )  \  { Y } ) )
18912, 34, 11grpinvnzcl 16236 . . . . . . . . 9  |-  ( ( R  e.  Grp  /\  k  e.  ( ( Base `  R )  \  { Y } ) )  ->  ( ( invg `  R ) `
 k )  e.  ( ( Base `  R
)  \  { Y } ) )
190186, 189sylan 471 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  k  e.  ( ( Base `  R
)  \  { Y } ) )  -> 
( ( invg `  R ) `  k
)  e.  ( (
Base `  R )  \  { Y } ) )
191 eldifi 3622 . . . . . . . . . 10  |-  ( k  e.  ( ( Base `  R )  \  { Y } )  ->  k  e.  ( Base `  R
) )
19212, 11grpinvinv 16231 . . . . . . . . . 10  |-  ( ( R  e.  Grp  /\  k  e.  ( Base `  R ) )  -> 
( ( invg `  R ) `  (
( invg `  R ) `  k
) )  =  k )
193186, 191, 192syl2an 477 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  k  e.  ( ( Base `  R
)  \  { Y } ) )  -> 
( ( invg `  R ) `  (
( invg `  R ) `  k
) )  =  k )
194193eqcomd 2465 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  k  e.  ( ( Base `  R
)  \  { Y } ) )  -> 
k  =  ( ( invg `  R
) `  ( ( invg `  R ) `
 k ) ) )
195 fveq2 5872 . . . . . . . . . 10  |-  ( l  =  ( ( invg `  R ) `
 k )  -> 
( ( invg `  R ) `  l
)  =  ( ( invg `  R
) `  ( ( invg `  R ) `
 k ) ) )
196195eqeq2d 2471 . . . . . . . . 9  |-  ( l  =  ( ( invg `  R ) `
 k )  -> 
( k  =  ( ( invg `  R ) `  l
)  <->  k  =  ( ( invg `  R ) `  (
( invg `  R ) `  k
) ) ) )
197196rspcev 3210 . . . . . . . 8  |-  ( ( ( ( invg `  R ) `  k
)  e.  ( (
Base `  R )  \  { Y } )  /\  k  =  ( ( invg `  R ) `  (
( invg `  R ) `  k
) ) )  ->  E. l  e.  (
( Base `  R )  \  { Y } ) k  =  ( ( invg `  R
) `  l )
)
198190, 194, 197syl2anc 661 . . . . . . 7  |-  ( ( W  e.  LMod  /\  k  e.  ( ( Base `  R
)  \  { Y } ) )  ->  E. l  e.  (
( Base `  R )  \  { Y } ) k  =  ( ( invg `  R
) `  l )
)
199 oveq1 6303 . . . . . . . . . 10  |-  ( k  =  ( ( invg `  R ) `
 l )  -> 
( k  .x.  ( F `  j )
)  =  ( ( ( invg `  R ) `  l
)  .x.  ( F `  j ) ) )
200199eleq1d 2526 . . . . . . . . 9  |-  ( k  =  ( ( invg `  R ) `
 l )  -> 
( ( k  .x.  ( F `  j ) )  e.  ( (
LSpan `  W ) `  ( F " ( I 
\  { j } ) ) )  <->  ( (
( invg `  R ) `  l
)  .x.  ( F `  j ) )  e.  ( ( LSpan `  W
) `  ( F " ( I  \  {
j } ) ) ) ) )
201200notbid 294 . . . . . . . 8  |-  ( k  =  ( ( invg `  R ) `
 l )  -> 
( -.  ( k 
.x.  ( F `  j ) )  e.  ( ( LSpan `  W
) `  ( F " ( I  \  {
j } ) ) )  <->  -.  ( (
( invg `  R ) `  l
)  .x.  ( F `  j ) )  e.  ( ( LSpan `  W
) `  ( F " ( I  \  {
j } ) ) ) ) )
202201adantl 466 . . . . . . 7  |-  ( ( W  e.  LMod  /\  k  =  ( ( invg `  R ) `
 l ) )  ->  ( -.  (
k  .x.  ( F `  j ) )  e.  ( ( LSpan `  W
) `  ( F " ( I  \  {
j } ) ) )  <->  -.  ( (
( invg `  R ) `  l
)  .x.  ( F `  j ) )  e.  ( ( LSpan `  W
) `  ( F " ( I  \  {
j } ) ) ) ) )
203188, 198, 202ralxfrd 4670 . . . . . 6  |-  ( W  e.  LMod  ->  ( A. k  e.  ( ( Base `  R )  \  { Y } )  -.  ( k  .x.  ( F `  j )
)  e.  ( (
LSpan `  W ) `  ( F " ( I 
\  { j } ) ) )  <->  A. l  e.  ( ( Base `  R
)  \  { Y } )  -.  (
( ( invg `  R ) `  l
)  .x.  ( F `  j ) )  e.  ( ( LSpan `  W
) `  ( F " ( I  \  {
j } ) ) ) ) )
2042033ad2ant1 1017 . . . . 5  |-  ( ( W  e.  LMod  /\  I  e.  X  /\  F :
I --> B )  -> 
( A. k  e.  ( ( Base `  R
)  \  { Y } )  -.  (
k  .x.  ( F `  j ) )  e.  ( ( LSpan `  W
) `  ( F " ( I  \  {
j } ) ) )  <->  A. l  e.  ( ( Base `  R
)  \  { Y } )  -.  (
( ( invg `  R ) `  l
)  .x.  ( F `  j ) )  e.  ( ( LSpan `  W
) `  ( F " ( I  \  {
j } ) ) ) ) )
205204adantr 465 . . . 4  |-  ( ( ( W  e.  LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  ->  ( A. k  e.  ( ( Base `  R )  \  { Y } )  -.  ( k  .x.  ( F `  j )
)  e.  ( (
LSpan `  W ) `  ( F " ( I 
\  { j } ) ) )  <->  A. l  e.  ( ( Base `  R
)  \  { Y } )  -.  (
( ( invg `  R ) `  l
)  .x.  ( F `  j ) )  e.  ( ( LSpan `  W
) `  ( F " ( I  \  {
j } ) ) ) ) )
206 simplr 755 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  x  e.  L )  ->  j  e.  I )
207 fvex 5882 . . . . . . . . . 10  |-  ( 0g
`  R )  e. 
_V
20834, 207eqeltri 2541 . . . . . . . . 9  |-  Y  e. 
_V
209208fvconst2 6128 . . . . . . . 8  |-  ( j  e.  I  ->  (
( I  X.  { Y } ) `  j
)  =  Y )
210206, 209syl 16 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  x  e.  L )  ->  (
( I  X.  { Y } ) `  j
)  =  Y )
211210eqeq2d 2471 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  x  e.  L )  ->  (
( x `  j
)  =  ( ( I  X.  { Y } ) `  j
)  <->  ( x `  j )  =  Y ) )
212211imbi2d 316 . . . . 5  |-  ( ( ( ( W  e. 
LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  /\  x  e.  L )  ->  (
( ( W  gsumg  ( x  oF  .x.  F
) )  =  .0. 
->  ( x `  j
)  =  ( ( I  X.  { Y } ) `  j
) )  <->  ( ( W  gsumg  ( x  oF  .x.  F ) )  =  .0.  ->  (
x `  j )  =  Y ) ) )
213212ralbidva 2893 . . . 4  |-  ( ( ( W  e.  LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  ->  ( A. x  e.  L  (
( W  gsumg  ( x  oF  .x.  F ) )  =  .0.  ->  (
x `  j )  =  ( ( I  X.  { Y }
) `  j )
)  <->  A. x  e.  L  ( ( W  gsumg  ( x  oF  .x.  F
) )  =  .0. 
->  ( x `  j
)  =  Y ) ) )
214185, 205, 2133bitr4d 285 . . 3  |-  ( ( ( W  e.  LMod  /\  I  e.  X  /\  F : I --> B )  /\  j  e.  I
)  ->  ( A. k  e.  ( ( Base `  R )  \  { Y } )  -.  ( k  .x.  ( F `  j )
)  e.  ( (
LSpan `  W ) `  ( F " ( I 
\  { j } ) ) )  <->  A. x  e.  L  ( ( W  gsumg  ( x  oF  .x.  F ) )  =  .0.  ->  (
x `  j )  =  ( ( I  X.  { Y }
) `  j )
) ) )
215214ralbidva 2893 . 2  |-  ( ( W  e.  LMod  /\  I  e.  X  /\  F :
I --> B )  -> 
( A. j  e.  I  A. k  e.  ( ( Base `  R
)  \  { Y } )  -.  (
k  .x.  ( F `  j ) )  e.  ( ( LSpan `  W
) `  ( F " ( I  \  {
j } ) ) )  <->  A. j  e.  I  A. x  e.  L  ( ( W  gsumg  ( x  oF  .x.  F
) )  =  .0. 
->  ( x `  j
)  =  ( ( I  X.  { Y } ) `  j
) ) ) )
2167, 9, 162, 8, 12, 34islindf2 18975 . 2  |-  ( ( W  e.  LMod  /\  I  e.  X  /\  F :
I --> B )  -> 
( F LIndF  W  <->  A. j  e.  I  A. k  e.  ( ( Base `  R
)  \  { Y } )  -.  (
k  .x.  ( F `  j ) )  e.  ( ( LSpan `  W
) `  ( F " ( I  \  {
j } ) ) ) ) )
217175, 12, 181frlmbasf 18920 . . . . . . . 8  |-  ( ( I  e.  X  /\  x  e.  L )  ->  x : I --> ( Base `  R ) )
2182173ad2antl2 1159 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  I  e.  X  /\  F : I --> B )  /\  x  e.  L
)  ->  x :
I --> ( Base `  R
) )
219 ffn 5737 . . . . . . 7  |-  ( x : I --> ( Base `  R )  ->  x  Fn  I )
220218, 219syl 16 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  I  e.  X  /\  F : I --> B )  /\  x  e.  L
)  ->  x  Fn  I )
221 fnconstg 5779 . . . . . . 7  |-  ( Y  e.  _V  ->  (
I  X.  { Y } )  Fn  I
)
222208, 221ax-mp 5 . . . . . 6  |-  ( I  X.  { Y }
)  Fn  I
223 eqfnfv 5982 . . . . . 6  |-  ( ( x  Fn  I  /\  ( I  X.  { Y } )  Fn  I
)  ->  ( x  =  ( I  X.  { Y } )  <->  A. j  e.  I  ( x `  j )  =  ( ( I  X.  { Y } ) `  j
) ) )
224220, 222, 223sylancl 662 . . . . 5  |-  ( ( ( W  e.  LMod  /\  I  e.  X  /\  F : I --> B )  /\  x  e.  L
)  ->  ( x  =  ( I  X.  { Y } )  <->  A. j  e.  I  ( x `  j )  =  ( ( I  X.  { Y } ) `  j
) ) )
225224imbi2d 316 . . . 4  |-  ( ( ( W  e.  LMod  /\  I  e.  X  /\  F : I --> B )  /\  x  e.  L
)  ->  ( (
( W  gsumg  ( x  oF  .x.  F ) )  =  .0.  ->  x  =  ( I  X.  { Y } ) )  <-> 
( ( W  gsumg  ( x  oF  .x.  F
) )  =  .0. 
->  A. j  e.  I 
( x `  j
)  =  ( ( I  X.  { Y } ) `  j
) ) ) )
226225ralbidva 2893 . . 3  |-  ( ( W  e.  LMod  /\  I  e.  X  /\  F :
I --> B )  -> 
( A. x  e.  L  ( ( W 
gsumg  ( x  oF  .x.  F ) )  =  .0.  ->  x  =  ( I  X.  { Y } ) )  <->  A. x  e.  L  ( ( W  gsumg  ( x  oF  .x.  F ) )  =  .0.  ->  A. j  e.  I  ( x `  j )  =  ( ( I  X.  { Y } ) `  j
) ) ) )
227 r19.21v 2862 . . . . 5  |-  ( A. j  e.  I  (
( W  gsumg  ( x  oF  .x.  F ) )  =  .0.  ->  (
x `  j )  =  ( ( I  X.  { Y }
) `  j )
)  <->  ( ( W 
gsumg  ( x  oF  .x.  F ) )  =  .0.  ->  A. j  e.  I  ( x `  j )  =  ( ( I  X.  { Y } ) `  j
) ) )
228227ralbii 2888 . . . 4  |-  ( A. x  e.  L  A. j  e.  I  (
( W  gsumg  ( x  oF  .x.  F ) )  =  .0.  ->  (
x `  j )  =  ( ( I  X.  { Y }
) `  j )
)  <->  A. x  e.  L  ( ( W  gsumg  ( x  oF  .x.  F
) )  =  .0. 
->  A. j  e.  I 
( x `  j
)  =  ( ( I  X.  { Y } ) `  j
) ) )
229 ralcom 3018 . . . 4  |-  ( A. x  e.  L  A. j  e.  I  (
( W  gsumg  ( x  oF  .x.  F ) )  =  .0.  ->  (
x `  j )  =  ( ( I  X.  { Y }
) `  j )
)  <->  A. j  e.  I  A. x  e.  L  ( ( W  gsumg  ( x  oF  .x.  F
) )  =  .0. 
->  ( x `  j
)  =  ( ( I  X.  { Y } ) `  j
) ) )
230228, 229bitr3i 251 . . 3  |-  ( A. x  e.  L  (
( W  gsumg  ( x  oF  .x.  F ) )  =  .0.  ->  A. j  e.  I  ( x `  j )  =  ( ( I  X.  { Y } ) `  j
) )  <->  A. j  e.  I  A. x  e.  L  ( ( W  gsumg  ( x  oF  .x.  F ) )  =  .0.  ->  (
x `  j )  =  ( ( I  X.  { Y }
) `  j )
) )
231226, 230syl6bb 261 . 2  |-  ( ( W  e.  LMod  /\  I  e.  X  /\  F :
I --> B )  -> 
( A. x  e.  L  ( ( W 
gsumg  ( x  oF  .x.  F ) )  =  .0.  ->  x  =  ( I  X.  { Y } ) )  <->  A. j  e.  I  A. x  e.  L  ( ( W  gsumg  ( x  oF  .x.  F ) )  =  .0.  ->  (
x `  j )  =  ( ( I  X.  { Y }
) `  j )
) ) )
232215, 216, 2313bitr4d 285 1  |-  ( ( W  e.  LMod  /\  I  e.  X  /\  F :
I --> B )  -> 
( F LIndF  W  <->  A. x  e.  L  ( ( W  gsumg  ( x  oF  .x.  F ) )  =  .0.  ->  x  =  ( I  X.  { Y } ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    e/ wnel 2653   A.wral 2807   E.wrex 2808   {crab 2811   _Vcvv 3109    \ cdif 3468    u. cun 3469    i^i cin 3470    C_ wss 3471   (/)c0 3793   {csn 4032   <.cop 4038   class class class wbr 4456    |-> cmpt 4515    X. cxp 5006   dom cdm 5008    |` cres 5010   "cima 5011   Fun wfun 5588    Fn wfn 5589   -->wf 5590   ` cfv 5594  (class class class)co 6296    oFcof 6537    ^m cmap 7438   finSupp cfsupp 7847   Basecbs 14643   +g cplusg 14711  Scalarcsca 14714   .scvsca 14715   0gc0g 14856    gsumg cgsu 14857   Mndcmnd 16045   Grpcgrp 16179   invgcminusg 16180  CMndccmn 16924   LModclmod 17638   LSpanclspn 17743   freeLMod cfrlm 18903   LIndF clindf 18965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-om 6700  df-1st 6799  df-2nd 6800  df-supp 6918  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-map 7440  df-ixp 7489  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fsupp 7848  df-sup 7919  df-oi 7953  df-card 8337  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-fz 11698  df-fzo 11821  df-seq 12110  df-hash 12408  df-struct 14645  df-ndx 14646  df-slot 14647  df-base 14648  df-sets 14649  df-ress 14650  df-plusg 14724  df-mulr 14725  df-sca 14727  df-vsca 14728  df-ip 14729  df-tset 14730  df-ple 14731  df-ds 14733  df-hom 14735  df-cco 14736  df-0g 14858  df-gsum 14859  df-prds 14864  df-pws 14866  df-mre 15002  df-mrc 15003  df-acs 15005  df-mgm 15998  df-sgrp 16037  df-mnd 16047  df-mhm 16092  df-submnd 16093  df-grp 16183  df-minusg 16184  df-sbg 16185  df-mulg 16186  df-subg 16324  df-ghm 16391  df-cntz 16481  df-cmn 16926  df-abl 16927  df-mgp 17268  df-ur 17280  df-ring 17326  df-subrg 17553  df-lmod 17640  df-lss 17705  df-lsp 17744  df-lmhm 17794  df-lbs 17847  df-sra 17944  df-rgmod 17945  df-nzr 18032  df-dsmm 18889  df-frlm 18904  df-uvc 18940  df-lindf 18967
This theorem is referenced by:  islindf5  19000  aacllem  33318
  Copyright terms: Public domain W3C validator