MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islidl Structured version   Unicode version

Theorem islidl 18056
Description: Predicate of being a (left) ideal. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
islidl.s  |-  U  =  (LIdeal `  R )
islidl.b  |-  B  =  ( Base `  R
)
islidl.p  |-  .+  =  ( +g  `  R )
islidl.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
islidl  |-  ( I  e.  U  <->  ( I  C_  B  /\  I  =/=  (/)  /\  A. x  e.  B  A. a  e.  I  A. b  e.  I  ( ( x 
.x.  a )  .+  b )  e.  I
) )
Distinct variable groups:    x, B    I, a, b, x    R, a, b, x
Allowed substitution hints:    B( a, b)    .+ ( x, a, b)    .x. ( x, a, b)    U( x, a, b)

Proof of Theorem islidl
StepHypRef Expression
1 rlmsca2 18045 . 2  |-  (  _I 
`  R )  =  (Scalar `  (ringLMod `  R
) )
2 baseid 14767 . . 3  |-  Base  = Slot  ( Base `  ndx )
3 islidl.b . . 3  |-  B  =  ( Base `  R
)
42, 3strfvi 14761 . 2  |-  B  =  ( Base `  (  _I  `  R ) )
5 rlmbas 18039 . . 3  |-  ( Base `  R )  =  (
Base `  (ringLMod `  R
) )
63, 5eqtri 2483 . 2  |-  B  =  ( Base `  (ringLMod `  R ) )
7 islidl.p . . 3  |-  .+  =  ( +g  `  R )
8 rlmplusg 18040 . . 3  |-  ( +g  `  R )  =  ( +g  `  (ringLMod `  R
) )
97, 8eqtri 2483 . 2  |-  .+  =  ( +g  `  (ringLMod `  R
) )
10 islidl.t . . 3  |-  .x.  =  ( .r `  R )
11 rlmvsca 18046 . . 3  |-  ( .r
`  R )  =  ( .s `  (ringLMod `  R ) )
1210, 11eqtri 2483 . 2  |-  .x.  =  ( .s `  (ringLMod `  R
) )
13 islidl.s . . 3  |-  U  =  (LIdeal `  R )
14 lidlval 18036 . . 3  |-  (LIdeal `  R )  =  (
LSubSp `  (ringLMod `  R
) )
1513, 14eqtri 2483 . 2  |-  U  =  ( LSubSp `  (ringLMod `  R
) )
161, 4, 6, 9, 12, 15islss 17779 1  |-  ( I  e.  U  <->  ( I  C_  B  /\  I  =/=  (/)  /\  A. x  e.  B  A. a  e.  I  A. b  e.  I  ( ( x 
.x.  a )  .+  b )  e.  I
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ w3a 971    = wceq 1398    e. wcel 1823    =/= wne 2649   A.wral 2804    C_ wss 3461   (/)c0 3783    _I cid 4779   ` cfv 5570  (class class class)co 6270   ndxcnx 14716   Basecbs 14719   +g cplusg 14787   .rcmulr 14788   .scvsca 14791   LSubSpclss 17776  ringLModcrglmod 18013  LIdealclidl 18014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-ndx 14722  df-slot 14723  df-base 14724  df-sets 14725  df-ress 14726  df-plusg 14800  df-sca 14803  df-vsca 14804  df-ip 14805  df-lss 17777  df-sra 18016  df-rgmod 18017  df-lidl 18018
This theorem is referenced by:  hbtlem2  31317  2zlidl  33013
  Copyright terms: Public domain W3C validator