Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isldil Structured version   Unicode version

Theorem isldil 34781
Description: The predicate "is a lattice dilation". Similar to definition of dilation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
ldilset.b  |-  B  =  ( Base `  K
)
ldilset.l  |-  .<_  =  ( le `  K )
ldilset.h  |-  H  =  ( LHyp `  K
)
ldilset.i  |-  I  =  ( LAut `  K
)
ldilset.d  |-  D  =  ( ( LDil `  K
) `  W )
Assertion
Ref Expression
isldil  |-  ( ( K  e.  C  /\  W  e.  H )  ->  ( F  e.  D  <->  ( F  e.  I  /\  A. x  e.  B  ( x  .<_  W  ->  ( F `  x )  =  x ) ) ) )
Distinct variable groups:    x, B    x, K    x, W    x, F
Allowed substitution hints:    C( x)    D( x)    H( x)    I( x)    .<_ ( x)

Proof of Theorem isldil
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 ldilset.b . . . 4  |-  B  =  ( Base `  K
)
2 ldilset.l . . . 4  |-  .<_  =  ( le `  K )
3 ldilset.h . . . 4  |-  H  =  ( LHyp `  K
)
4 ldilset.i . . . 4  |-  I  =  ( LAut `  K
)
5 ldilset.d . . . 4  |-  D  =  ( ( LDil `  K
) `  W )
61, 2, 3, 4, 5ldilset 34780 . . 3  |-  ( ( K  e.  C  /\  W  e.  H )  ->  D  =  { f  e.  I  |  A. x  e.  B  (
x  .<_  W  ->  (
f `  x )  =  x ) } )
76eleq2d 2530 . 2  |-  ( ( K  e.  C  /\  W  e.  H )  ->  ( F  e.  D  <->  F  e.  { f  e.  I  |  A. x  e.  B  ( x  .<_  W  ->  ( f `  x )  =  x ) } ) )
8 fveq1 5856 . . . . . 6  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
98eqeq1d 2462 . . . . 5  |-  ( f  =  F  ->  (
( f `  x
)  =  x  <->  ( F `  x )  =  x ) )
109imbi2d 316 . . . 4  |-  ( f  =  F  ->  (
( x  .<_  W  -> 
( f `  x
)  =  x )  <-> 
( x  .<_  W  -> 
( F `  x
)  =  x ) ) )
1110ralbidv 2896 . . 3  |-  ( f  =  F  ->  ( A. x  e.  B  ( x  .<_  W  -> 
( f `  x
)  =  x )  <->  A. x  e.  B  ( x  .<_  W  -> 
( F `  x
)  =  x ) ) )
1211elrab 3254 . 2  |-  ( F  e.  { f  e.  I  |  A. x  e.  B  ( x  .<_  W  ->  ( f `  x )  =  x ) }  <->  ( F  e.  I  /\  A. x  e.  B  ( x  .<_  W  ->  ( F `  x )  =  x ) ) )
137, 12syl6bb 261 1  |-  ( ( K  e.  C  /\  W  e.  H )  ->  ( F  e.  D  <->  ( F  e.  I  /\  A. x  e.  B  ( x  .<_  W  ->  ( F `  x )  =  x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762   A.wral 2807   {crab 2811   class class class wbr 4440   ` cfv 5579   Basecbs 14479   lecple 14551   LHypclh 34655   LAutclaut 34656   LDilcldil 34771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pr 4679
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-ldil 34775
This theorem is referenced by:  ldillaut  34782  ldilval  34784  idldil  34785  ldilcnv  34786  ldilco  34787  cdleme50ldil  35219
  Copyright terms: Public domain W3C validator