MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islbs3 Structured version   Unicode version

Theorem islbs3 17670
Description: An equivalent formulation of the basis predicate: a subset is a basis iff it is a minimal spanning set. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
islbs2.v  |-  V  =  ( Base `  W
)
islbs2.j  |-  J  =  (LBasis `  W )
islbs2.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
islbs3  |-  ( W  e.  LVec  ->  ( B  e.  J  <->  ( B  C_  V  /\  ( N `
 B )  =  V  /\  A. s
( s  C.  B  ->  ( N `  s
)  C.  V )
) ) )
Distinct variable groups:    B, s    N, s    V, s    W, s    J, s

Proof of Theorem islbs3
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 islbs2.v . . . . 5  |-  V  =  ( Base `  W
)
2 islbs2.j . . . . 5  |-  J  =  (LBasis `  W )
31, 2lbsss 17592 . . . 4  |-  ( B  e.  J  ->  B  C_  V )
43adantl 466 . . 3  |-  ( ( W  e.  LVec  /\  B  e.  J )  ->  B  C_  V )
5 islbs2.n . . . . 5  |-  N  =  ( LSpan `  W )
61, 2, 5lbssp 17594 . . . 4  |-  ( B  e.  J  ->  ( N `  B )  =  V )
76adantl 466 . . 3  |-  ( ( W  e.  LVec  /\  B  e.  J )  ->  ( N `  B )  =  V )
8 lveclmod 17621 . . . . . . . 8  |-  ( W  e.  LVec  ->  W  e. 
LMod )
983ad2ant1 1017 . . . . . . 7  |-  ( ( W  e.  LVec  /\  B  e.  J  /\  s  C.  B )  ->  W  e.  LMod )
10 pssss 3604 . . . . . . . . 9  |-  ( s 
C.  B  ->  s  C_  B )
1110, 3sylan9ssr 3523 . . . . . . . 8  |-  ( ( B  e.  J  /\  s  C.  B )  -> 
s  C_  V )
12113adant1 1014 . . . . . . 7  |-  ( ( W  e.  LVec  /\  B  e.  J  /\  s  C.  B )  ->  s  C_  V )
131, 5lspssv 17498 . . . . . . 7  |-  ( ( W  e.  LMod  /\  s  C_  V )  ->  ( N `  s )  C_  V )
149, 12, 13syl2anc 661 . . . . . 6  |-  ( ( W  e.  LVec  /\  B  e.  J  /\  s  C.  B )  ->  ( N `  s )  C_  V )
15 eqid 2467 . . . . . . . . . 10  |-  (Scalar `  W )  =  (Scalar `  W )
1615lvecdrng 17620 . . . . . . . . 9  |-  ( W  e.  LVec  ->  (Scalar `  W )  e.  DivRing )
17 eqid 2467 . . . . . . . . . 10  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
18 eqid 2467 . . . . . . . . . 10  |-  ( 1r
`  (Scalar `  W )
)  =  ( 1r
`  (Scalar `  W )
)
1917, 18drngunz 17280 . . . . . . . . 9  |-  ( (Scalar `  W )  e.  DivRing  -> 
( 1r `  (Scalar `  W ) )  =/=  ( 0g `  (Scalar `  W ) ) )
2016, 19syl 16 . . . . . . . 8  |-  ( W  e.  LVec  ->  ( 1r
`  (Scalar `  W )
)  =/=  ( 0g
`  (Scalar `  W )
) )
218, 20jca 532 . . . . . . 7  |-  ( W  e.  LVec  ->  ( W  e.  LMod  /\  ( 1r `  (Scalar `  W
) )  =/=  ( 0g `  (Scalar `  W
) ) ) )
222, 5, 15, 18, 17, 1lbspss 17597 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  ( 1r `  (Scalar `  W ) )  =/=  ( 0g `  (Scalar `  W ) ) )  /\  B  e.  J  /\  s  C.  B )  ->  ( N `  s )  =/=  V
)
2321, 22syl3an1 1261 . . . . . 6  |-  ( ( W  e.  LVec  /\  B  e.  J  /\  s  C.  B )  ->  ( N `  s )  =/=  V )
24 df-pss 3497 . . . . . 6  |-  ( ( N `  s ) 
C.  V  <->  ( ( N `  s )  C_  V  /\  ( N `
 s )  =/= 
V ) )
2514, 23, 24sylanbrc 664 . . . . 5  |-  ( ( W  e.  LVec  /\  B  e.  J  /\  s  C.  B )  ->  ( N `  s )  C.  V )
26253expia 1198 . . . 4  |-  ( ( W  e.  LVec  /\  B  e.  J )  ->  (
s  C.  B  ->  ( N `  s ) 
C.  V ) )
2726alrimiv 1695 . . 3  |-  ( ( W  e.  LVec  /\  B  e.  J )  ->  A. s
( s  C.  B  ->  ( N `  s
)  C.  V )
)
284, 7, 273jca 1176 . 2  |-  ( ( W  e.  LVec  /\  B  e.  J )  ->  ( B  C_  V  /\  ( N `  B )  =  V  /\  A. s
( s  C.  B  ->  ( N `  s
)  C.  V )
) )
29 simpr1 1002 . . 3  |-  ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B )  =  V  /\  A. s
( s  C.  B  ->  ( N `  s
)  C.  V )
) )  ->  B  C_  V )
30 simpr2 1003 . . 3  |-  ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B )  =  V  /\  A. s
( s  C.  B  ->  ( N `  s
)  C.  V )
) )  ->  ( N `  B )  =  V )
31 simplr1 1038 . . . . . . . . 9  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  x  e.  B )  ->  B  C_  V )
3231ssdifssd 3647 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  x  e.  B )  ->  ( B  \  {
x } )  C_  V )
33 fvex 5882 . . . . . . . . 9  |-  ( Base `  W )  e.  _V
341, 33eqeltri 2551 . . . . . . . 8  |-  V  e. 
_V
35 ssexg 4599 . . . . . . . 8  |-  ( ( ( B  \  {
x } )  C_  V  /\  V  e.  _V )  ->  ( B  \  { x } )  e.  _V )
3632, 34, 35sylancl 662 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  x  e.  B )  ->  ( B  \  {
x } )  e. 
_V )
37 simplr3 1040 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  x  e.  B )  ->  A. s ( s 
C.  B  ->  ( N `  s )  C.  V ) )
38 difssd 3637 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  x  e.  B )  ->  ( B  \  {
x } )  C_  B )
39 simpr 461 . . . . . . . . . 10  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  x  e.  B )  ->  x  e.  B )
40 neldifsn 4160 . . . . . . . . . 10  |-  -.  x  e.  ( B  \  {
x } )
41 nelne1 2796 . . . . . . . . . 10  |-  ( ( x  e.  B  /\  -.  x  e.  ( B  \  { x }
) )  ->  B  =/=  ( B  \  {
x } ) )
4239, 40, 41sylancl 662 . . . . . . . . 9  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  x  e.  B )  ->  B  =/=  ( B 
\  { x }
) )
4342necomd 2738 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  x  e.  B )  ->  ( B  \  {
x } )  =/= 
B )
44 df-pss 3497 . . . . . . . 8  |-  ( ( B  \  { x } )  C.  B  <->  ( ( B  \  {
x } )  C_  B  /\  ( B  \  { x } )  =/=  B ) )
4538, 43, 44sylanbrc 664 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  x  e.  B )  ->  ( B  \  {
x } )  C.  B )
46 psseq1 3596 . . . . . . . . 9  |-  ( s  =  ( B  \  { x } )  ->  ( s  C.  B 
<->  ( B  \  {
x } )  C.  B ) )
47 fveq2 5872 . . . . . . . . . 10  |-  ( s  =  ( B  \  { x } )  ->  ( N `  s )  =  ( N `  ( B 
\  { x }
) ) )
4847psseq1d 3601 . . . . . . . . 9  |-  ( s  =  ( B  \  { x } )  ->  ( ( N `
 s )  C.  V 
<->  ( N `  ( B  \  { x }
) )  C.  V
) )
4946, 48imbi12d 320 . . . . . . . 8  |-  ( s  =  ( B  \  { x } )  ->  ( ( s 
C.  B  ->  ( N `  s )  C.  V )  <->  ( ( B  \  { x }
)  C.  B  ->  ( N `  ( B 
\  { x }
) )  C.  V
) ) )
5049spcgv 3203 . . . . . . 7  |-  ( ( B  \  { x } )  e.  _V  ->  ( A. s ( s  C.  B  ->  ( N `  s ) 
C.  V )  -> 
( ( B  \  { x } ) 
C.  B  ->  ( N `  ( B  \  { x } ) )  C.  V )
) )
5136, 37, 45, 50syl3c 61 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  x  e.  B )  ->  ( N `  ( B  \  { x }
) )  C.  V
)
52 dfpss3 3595 . . . . . . 7  |-  ( ( N `  ( B 
\  { x }
) )  C.  V  <->  ( ( N `  ( B  \  { x }
) )  C_  V  /\  -.  V  C_  ( N `  ( B  \  { x } ) ) ) )
5352simprbi 464 . . . . . 6  |-  ( ( N `  ( B 
\  { x }
) )  C.  V  ->  -.  V  C_  ( N `  ( B  \  { x } ) ) )
5451, 53syl 16 . . . . 5  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  x  e.  B )  ->  -.  V  C_  ( N `  ( B  \  { x } ) ) )
55 simplr2 1039 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  ( x  e.  B  /\  x  e.  ( N `  ( B  \  { x } ) ) ) )  -> 
( N `  B
)  =  V )
568ad2antrr 725 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  ( x  e.  B  /\  x  e.  ( N `  ( B  \  { x } ) ) ) )  ->  W  e.  LMod )
5732adantrr 716 . . . . . . . . 9  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  ( x  e.  B  /\  x  e.  ( N `  ( B  \  { x } ) ) ) )  -> 
( B  \  {
x } )  C_  V )
58 eqid 2467 . . . . . . . . . 10  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
591, 58, 5lspcl 17491 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  ( B  \  { x }
)  C_  V )  ->  ( N `  ( B  \  { x }
) )  e.  (
LSubSp `  W ) )
6056, 57, 59syl2anc 661 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  ( x  e.  B  /\  x  e.  ( N `  ( B  \  { x } ) ) ) )  -> 
( N `  ( B  \  { x }
) )  e.  (
LSubSp `  W ) )
61 ssun1 3672 . . . . . . . . . 10  |-  B  C_  ( B  u.  { x } )
62 undif1 3908 . . . . . . . . . 10  |-  ( ( B  \  { x } )  u.  {
x } )  =  ( B  u.  {
x } )
6361, 62sseqtr4i 3542 . . . . . . . . 9  |-  B  C_  ( ( B  \  { x } )  u.  { x }
)
641, 5lspssid 17500 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  ( B  \  { x }
)  C_  V )  ->  ( B  \  {
x } )  C_  ( N `  ( B 
\  { x }
) ) )
6556, 57, 64syl2anc 661 . . . . . . . . . 10  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  ( x  e.  B  /\  x  e.  ( N `  ( B  \  { x } ) ) ) )  -> 
( B  \  {
x } )  C_  ( N `  ( B 
\  { x }
) ) )
66 simprr 756 . . . . . . . . . . 11  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  ( x  e.  B  /\  x  e.  ( N `  ( B  \  { x } ) ) ) )  ->  x  e.  ( N `  ( B  \  {
x } ) ) )
6766snssd 4178 . . . . . . . . . 10  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  ( x  e.  B  /\  x  e.  ( N `  ( B  \  { x } ) ) ) )  ->  { x }  C_  ( N `  ( B 
\  { x }
) ) )
6865, 67unssd 3685 . . . . . . . . 9  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  ( x  e.  B  /\  x  e.  ( N `  ( B  \  { x } ) ) ) )  -> 
( ( B  \  { x } )  u.  { x }
)  C_  ( N `  ( B  \  {
x } ) ) )
6963, 68syl5ss 3520 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  ( x  e.  B  /\  x  e.  ( N `  ( B  \  { x } ) ) ) )  ->  B  C_  ( N `  ( B  \  { x } ) ) )
7058, 5lspssp 17503 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( N `  ( B  \  { x } ) )  e.  ( LSubSp `  W )  /\  B  C_  ( N `  ( B  \  { x }
) ) )  -> 
( N `  B
)  C_  ( N `  ( B  \  {
x } ) ) )
7156, 60, 69, 70syl3anc 1228 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  ( x  e.  B  /\  x  e.  ( N `  ( B  \  { x } ) ) ) )  -> 
( N `  B
)  C_  ( N `  ( B  \  {
x } ) ) )
7255, 71eqsstr3d 3544 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  ( x  e.  B  /\  x  e.  ( N `  ( B  \  { x } ) ) ) )  ->  V  C_  ( N `  ( B  \  { x } ) ) )
7372expr 615 . . . . 5  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  x  e.  B )  ->  ( x  e.  ( N `  ( B 
\  { x }
) )  ->  V  C_  ( N `  ( B  \  { x }
) ) ) )
7454, 73mtod 177 . . . 4  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  x  e.  B )  ->  -.  x  e.  ( N `  ( B 
\  { x }
) ) )
7574ralrimiva 2881 . . 3  |-  ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B )  =  V  /\  A. s
( s  C.  B  ->  ( N `  s
)  C.  V )
) )  ->  A. x  e.  B  -.  x  e.  ( N `  ( B  \  { x }
) ) )
761, 2, 5islbs2 17669 . . . 4  |-  ( W  e.  LVec  ->  ( B  e.  J  <->  ( B  C_  V  /\  ( N `
 B )  =  V  /\  A. x  e.  B  -.  x  e.  ( N `  ( B  \  { x }
) ) ) ) )
7776adantr 465 . . 3  |-  ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B )  =  V  /\  A. s
( s  C.  B  ->  ( N `  s
)  C.  V )
) )  ->  ( B  e.  J  <->  ( B  C_  V  /\  ( N `
 B )  =  V  /\  A. x  e.  B  -.  x  e.  ( N `  ( B  \  { x }
) ) ) ) )
7829, 30, 75, 77mpbir3and 1179 . 2  |-  ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B )  =  V  /\  A. s
( s  C.  B  ->  ( N `  s
)  C.  V )
) )  ->  B  e.  J )
7928, 78impbida 830 1  |-  ( W  e.  LVec  ->  ( B  e.  J  <->  ( B  C_  V  /\  ( N `
 B )  =  V  /\  A. s
( s  C.  B  ->  ( N `  s
)  C.  V )
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973   A.wal 1377    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2817   _Vcvv 3118    \ cdif 3478    u. cun 3479    C_ wss 3481    C. wpss 3482   {csn 4033   ` cfv 5594   Basecbs 14506  Scalarcsca 14574   0gc0g 14711   1rcur 17023   DivRingcdr 17265   LModclmod 17381   LSubSpclss 17447   LSpanclspn 17486  LBasisclbs 17589   LVecclvec 17617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-tpos 6967  df-recs 7054  df-rdg 7088  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-2 10606  df-3 10607  df-ndx 14509  df-slot 14510  df-base 14511  df-sets 14512  df-ress 14513  df-plusg 14584  df-mulr 14585  df-0g 14713  df-mgm 15745  df-sgrp 15784  df-mnd 15794  df-grp 15928  df-minusg 15929  df-sbg 15930  df-mgp 17012  df-ur 17024  df-ring 17070  df-oppr 17142  df-dvdsr 17160  df-unit 17161  df-invr 17191  df-drng 17267  df-lmod 17383  df-lss 17448  df-lsp 17487  df-lbs 17590  df-lvec 17618
This theorem is referenced by:  obslbs  18628
  Copyright terms: Public domain W3C validator